
GTOC 9: Results from the Astrodynamics Research
Group of Penn State

Davide Conte*, Andrew Goodyear, Jason Reiter, Ghanghoon Paik,
Guanwei He, Mollik Nayyar, Matthew Shaw, Jeffrey Small, and Jason Everett

Astrodynamics Research Group of Penn State, The Pennsylvania State University,

229 Hammond Building, University Park, PA 16802

May 8, 2017

Abstract

Presented in this paper are methods and results
of the Astrodynamics Research Group of Penn
State (ARGoPS) for the 9th Global Trajectory
Optimization Competition [2]. The optimiza-
tion strategy utilized a beam search method
to determine the optimal sequence of missions
and transfers between debris, including the or-
der in which to visit each group, the timing
of each visit throughout the mission window
in order to minimize the number of missions,
and the total cost per transfer. Particle Swarm
Optimization (PSO) was applied to the opti-
mized ordering of debris visits in order to de-
termine the departure date and time-of-flight
combination which best minimize the fuel re-
quired for each transfer. This method led to a
solution that collected all 123 pieces of debris
from their Sun-sychronous orbits in 20 total
missions.

*Corresponding author. E-mail: da-
vide.conte90@gmail.com

1 Introduction

The 9th edition of the Global Trajectory Op-
timization Competition (GTOC 9) was orga-
nized by The European Space Agencys Ad-
vanced Concepts Team in the spring of 2017.
In this paper, the optimal strategy developed
by team ARGoPs (Astrodynamics Research
Group of Penn State University) is described.
The problem presented for GTOC 9, named
the ”Kessler Run”, suggests a spacecraft mis-
sion design in which a set of 123 pieces of de-
bris are removed from orbit in order to prevent
the ”Kessler effect”, a scenario in which the
explosion of a satellite leads to cascading col-
lisions of resident space objects. The detailed
problem description and equations can be read
in the problem description of the 9th GTOC,
written by Dr. Dario Izzo [2]. Presented here
is the approach and all formal details on the
space debris removal mission design that was
created during the month of April, 2017 by
team ARGoPs.

The solution was developed by writing and

1



running an optimization procedure in both
MATLAB and the C++ programming lan-
guages. The procedure consists of three steps:
Phase I (Raiden), Phase II (which is com-
prised of both The Butcher (of Groznyj Grad)
and Sniper Wolf ), and Phase III. Phase I of
the program determines the order in which
the individual debris pieces are visited and
takes the first steps to narrow the search space
for each transfer by using what is referred to
as a beam search clustering method, as ex-
plained in Section 2. Phase II of the pro-
gram takes the transfer sequence output from
Phase I and further refines the search space
for individual transfers via a function referred
to as The Butcher (of Groznyj Grad), or sim-
ply The Butcher, which uses a Lambert solver
within a Particle Swarm Optimization scheme
to search for useful solutions within the time
bounds determined by Raiden. Once The
Butcher refines each search space even fur-
ther, Sniper Wolf takes over and implements
another search for transfer trajectories using
Particle Swarm Optimization to find and cal-
culate the transfers between debris objects us-
ing the full J2-affected dynamics to ensure that
the transfer will converge to a valid and sub-
optimal solution (see Section 3 for further de-
tails on The Butcher and Sniper Wolf ). The
results from Sniper Wolf are checked for mass
feasibility before any final solution is deemed
appropriate. Phase III is then initiated, where
the verified results are saved in the correct out-
put format necessary for upload to the online
submission system. The program structure is
summarized in Figure 1.

Each function used is shown in Figure 1.
as an individual block. The red colored func-
tion blocks indicate lower-fidelity solutions to
the problem, whereas the blue colored func-
tion block is the higher-fidelity solution. The

Figure 1: Program Flowchart.

lavender colored function block represents a
final mass check and then the green colored
function block indicates the final submission
file creator function. The search space is pro-
gressively narrowed as more fidelity is deter-
mined for the solution. A visual representation
of this search space is captured in Figure 2.

2 The Beam Search Clustering
Method

Beam search is a heuristic algorithm that
builds search trees with a restricted number of
states at each level, referred to as beam width.
By limiting beam width, beam search can min-
imize complexity and memory usage, which
is beneficial for problems with a large search
space. A basic understanding of this algorithm
is shown in Figure 3.

2



Figure 2: A visual representation of the solu-
tion search space for transfers between debris.

A fast-paced beam search method capable
of dividing the given timeline into a sequence
of missions was used. This method, referred
to as Raiden, was implemented to define
the sequence by linking together debris
based on the right ascension of ascending
node (RAAN) and inclination of each orbit.
Each mission was constructed such that no
individual transfer exceeded a maximum
plane change magnitude while attempting to
distribute the required propellant mass evenly
between missions. Raiden is structured to
contine to link pieces of debris together until
either a maximum amount of objects per
mission is achieved, or the estimated propel-
lant usage exceeds the allowable estimated
propellant usage per mission. The departure
and arrival epochs in between each piece of
debris were chosen such that the transfer is
performed when the two debris pieces are
near their closest approach and the transfer
could be completed with plenty of time to
spare given the required plane change.

Figure 3: Standard beam search algorithm. [1]

The beam search algorithm was applied
on both the debris-to-debris scope, and
the mission-to-mission scope. The starting
epoch of each mission was probed randomly
throughout the allowable mission timeline for
a set amount of iterations and, at each probed
starting epoch, Raiden was used to find the
locally next best missions and store them in a
custom beam search map structure designed
to branch from in future iterations. After
the stopping criteria is met that terminates
the debris-level beam search algorithm, the
mission-level algorithm branches from all
locally optimal missions to find the next best
set of missions. Each branch of the mission-
level beam search algorithm is partnered with
a custom time cell structure that contains
information about available time intervals
for future missions based on the previous
missions in that specific branch. The only
stopping criteria of the mission-level beam
search algorithm is the remaining number of
debris available to be linked in a mission,
based on the locations of the debris through-

3



out the allowable time intervals. The various
mission sequences that were developed using
Raiden were named as follows (in order of
increasing optimality, and amount of debris
captured): The Pain, The Fear, The End, and
The Fury. The Fury is the mission sequence
that was ultimately chosen.

3 Trajectory Optimization
In this section, the trajectory optimization
methods used to compute the individual
orbital transfers between debris pieces, re-
ferred to as The Butcher and Sniper Wolf,
are presented. A Keplerian approximation
(solution to Lambert’s problem) was used
with a particle swarm algorithm to narrow
the search space and give Sniper Wolf better
initial guesses (The Butcher). The particle
swarm algorithm is then given the derived
departures and time-of-flights from the Kep-
lerian approximation as intial guesses to find
the optimal time of flight and corresponding
transfer velocity in the J2 dynamic model
(Sniper Wolf ).

Given the computationally expensive
process involved in optimizing trajectories
where J2 perturbations are considered, it
was necessary to find a way to decrease the
search space by utilizing a lower-fidelity
approximation to each orbital transfer. In
fact, this lowers computational time while
giving the high-fidelity optimizer a better
initial guess used to eventually minimize
propellant consumption. It was determined
that the solution to the Keplerian Lambert’s
problem was a ”good enough” estimate to be
passed on to the optimizer that would take

into account J2 effects. Oblateness effects
the spacecraft position drift over time from
the two-body problem model (see Figure 4).
In order to account for this perturbation, a
deviation in the initial spacecraft velocity is
needed. Thus, an accurate search space for
the perturbed Lambert’s problem solution was
needed in order to ensure that the spacecraft
would rendezvous with the debris and that
the propellant needed to accomplish such ma-
neuvers would be minimized. After multiple
tests, the average transfer time between debris
pieces corresponding to the optimal solutions
was found to be less than half of a day, thus
validating the fact that the Keplerian solution
can successfully narrow down the search
space for the majority of transfers (except for
those transfers requiring much longer time of
flight). In order to determine such a search
space, a Particle Swarm Optimization (PSO)
technique was applied. [4] Given the desired
debris ID numbers and the window available
for the transfer as determined by the beam
search algorithm, the available departure
epoch in the transfer window and the transfer
time (based on the remaining time available to
complete the transfer) were used as particles
in the optimization. The subsequent cost for
each particle at each iteration was found by
using the Keplerian Lambert’s solution to
determine the ∆v cost of the transfer. This
optimization method resulted in a single
departure epoch and transfer time that would
minimize the ∆v cost for the transfer under
purely Keplerian dynamics. Bounds were
then applied to these numbers (based on the
expected convergence under J2 oblateness
dynamics) in order to provide a search region
for Sniper Wolf. This algorithm was named
The Butcher due to the fact that it is supposed
to return rough estimates that needed to be

4



refined. Additionally, running this optimizer
for all possible ranges of departure and arrival
dates would result in porkchop plots, which
are contour plots of ∆v on departure vs.
arrival date axes.

Figure 4: Drift vector effects due to J2 dynam-
ics. [3]

In order to find the exact necessary ∆v and
time-of-flight between two given debris for a
range of departure and arrival dates (account-
ing for J2 effects), a multi-objective PSO was
implemented. This algorithm, referred to as
Sniper Wolf, i.e. the precise, patient and (al-
most) infallible J2-perturbed Lambert solver,
is tasked with finding valid transfer solutions
that satisfy the relative position and velocity
constraints for rendezvous (100 meters and 1
m/s, respectively) while minimizing the total
∆v needed to accomplish such maneuver. The
basic pseudocode is shown in Figure 5. Note
that only two-burn maneuvers were consid-
ered to keep the optimization tradespace di-
mensions (and thus computational time) to a
minimum. In order to increase the robust-
ness of Sniper Wolf, the optimizer would run
until a valid (δr < δrTOL) and/or optimal

(∆v < ∆vestimated) solution was found. The
inputs for Sniper Wolf are directly taken from
the outputs of The Butcher as described above
and are:

1. IDs of the departure and arrival debris
pieces.

2. Departure and arrival time ranges.

3. Estimated ∆v and orbit type (long vs.
short way solution, etc.).

The outputs of Sniper Wolf are:

1. Optimal ∆v1 and ∆v2 needed to initiate
and complete the rendezvous maneuver.

2. Departure time and TOF corresponding
to the optimal transfer found.

3. A flag corresponding to whether the op-
timizer was able to find a valid solution
within the prescribed number of itera-
tions.

4 Results

After running Raiden, the top-level optimizer,
multiple times using the beam search method
described in Section 2, the most optimal solu-
tion that was found, The Fury, consisted of 20
missions with a total of 103 transfers between
debris pieces. The timeline of the mission is
shown in Figure 6, where each segment corre-
sponds to each individual mission (as defined
by the number above it) launched as part of
The Fury. The first mission in chronological
order, Mission 20, starts on MDJ 23476.38.
A summary of all of the missions and trans-
fers ∆v and propellant mass is given in Table
1. The average required ∆v and transfer time

5



Sniper Wolf - Pseudocode(P )
00 while δr > δrTOL && ∆v > ∆vestimated

01 PSO particles are randomly initialized using departure time, TOF,
and 3-component velocity vector deviations as particle elements

02 for 1 : 1 : iterations
03 for 1 : 1 : particles
04 r1, r2 ← Propagate starting and arrival debris pieces
05 ∆v1, ∆v2← Solve Keplerian Labert’s problem using r1, r2
06 if Periapse constraint is not met
07 J = 107 // Particle receives a large penalty

08 else
09 Integrate s/c trajectory using the solution to Lambert’s

problem with the particle’s velocity vector deviations
10 δr← Compute drift vector magnitude
11 J = 0.001∗ [10∗ (δr−δrTOL)∗u(δr−δrTOL)+ ...

∆v]← Compute cost
12 end
13 end // end of particle computations

14 Determine the best particle based on J
15 Update ”velocity” and ”position” vectors for each particle
16 if J stagnates
17 Reset half of the particles which have the highest J
18 end
19 end // end of PSO iterations

20 PBest, Jbest← Find best solution among the particles
20 if new Jbest > old Jbest
21 Jbest = new Jbest and Solution = Pbest

22 end
23 end // end of the while loop

24 Return the best Solution

Figure 5: Sniper Wolf basic pseudocode.

values per transfer for each mission are shown
in Figure 7.

The intention in the mission planning was
to attempt to gather as many debris pieces
as possible while keeping fuel requirements
within the mass restrictions defined by the
problem. Figure 7 shows that this objective
was achieved with success for larger missions,
such as Missions 1 through 8. These larger
missions maintained higher efficacy in using
the fuel that was allocated for their duration.
However, as large missions are created by sort-
ing debris pieces into similar orbital planes,
the likelihood of being able to group the rest
of the debris similarly decreases. There is a

Figure 6: The Fury - Mission timeline.

trend that appears, where an increase in the ra-
tio of fuel cost per debris captured manifests as

6



Figure 7: The Fury averaged results.

the number of debris available decreases to a
small number (such as a single transfer). Some
missions consisted of lower quantities of de-
bris removed with larger fuel masses, such as
Missions 17 through 20. Although this is an
undesirable effect, it is inherently a part of the
problem.

In order to remove larger quantities of de-
bris in less missions, the conditions that de-
termine how similar orbital planes are classi-
fied for groups of debris needed to be relaxed.
The relaxation of these conditions can result in
costly transfers that are high in fuel consump-
tion. The higher fuel consumption at times
would fall outside of the bounds of the mass
capability set forth by the problem statement.
The alternative approach was to take a larger
number of missions in order to be capable of
transferring between all debris pieces without
exceeding the mass restrictions that govern the
problem. The required mass ended up being
lower than the maximum carrying capability
available at times, but this was useful in low-
ering the cost function for specific missions di-
rectly.

Generally, the missions consisting of longer

Table 1: Summary of all of the mission of the
sequence The Fury.

The Fury - Mission Summary
Mission
Number

Number
of Trans-
fers

∆v
[m/s]

Propellant
Mass
[kg]

1 11 3978.62 4951.58
2 10 3929.44 4881.75
3 9 3316.76 3599.01
4 10 3923.04 4764.82
5 8 3408.66 3776.52
6 7 3984.92 4841.94
7 6 2258.99 2027.75
8 6 2765.71 2685.57
9 6 2313.49 2102.76
10 5 2785.08 2715.98
11 5 2508.40 2339.24
12 4 2506.96 2308.16
13 4 2787.16 2701.60
14 3 1467.72 1140.72
15 3 1251.12 941.42
16 2 1384.10 1049.31
17 1 2373.11 2106.17
18 1 1479.99 1134.23
19 1 2861.90 2759.22
20 1 2479.13 2239.80

average times of flight between objects also
required less fuel, as seen in Figure 7. How-
ever, outliers like Mission 3 exist that do not
fit that pattern. This likely occured because
not only are variation in semimajor axis and
eccentricity not accounted for when determin-
ing the mission sequence, but the optimization
methods used are not guaranteed to find global
minima.

Future improvement to this method of so-
lution could consist of isolating the high fuel
single transfer missions in order to find a way

7



to group them with nearby missions that fall
within similar time-frames. Another aspect
of the solution that could be analyzed fur-
ther is the number of burns per transfer. The
ability to increase the number of burns be-
yond two could yield more favorable fuel con-
sumption requirements for most transfers, es-
pecially those with larger plane change mag-
nitudes.

5 Discussion and Conclusions

In this paper the methods and results of the As-
trodynamics Research Group of Penn State in
the 9th Global Trajectory Optimization Com-
petition were described [2]. An optimiza-
tion strategy using a beam search clustering
method (Raiden) was used to group orbital
debris with similar orbital planes and RAAN
to determine the order and timing of each
visit. A Keplerian Lambert’s problem solution
(The Butcher) was applied to narrow down
the search space for a high-fidelity optimizer
using Particle Swarm Optimization (Sniper
Wolf ), which determined the best departure
date and time of flight for each visit. While
the method did result in four one-transfer mis-
sions with high fuel costs, all 123 objects were
captured in 20 missions, giving ARGoPS a fi-
nal score of 1512.60176793564.

Further improvements require more com-
putational power to find a better mission se-
quence and trajectories.

References
[1] H. Akeb, M. Hifi, and R. MHallah. A

beam search algorithm for the circular
packing problem. Computers & Opera-
tions Research, 2009.

[2] Dario Izzo. Problem description for the
9th Global Trajectory Optimisation Com-
petition.

[3] H. Ma, S. Xu, and Y. Liang. Global op-
timization of fuel consumption in j2 ren-
dezvous using interval analysis. Advances
in Space Research, 59:1577–1598, 2017.

[4] M. Pontani and B. Conway. Particle
swarm optimization applied to space tra-
jectories. Journal of Guidance, Control,
and Dynamics, 33(5):1429–1441, 2010.

8


