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Abstract

This paper describes the strategies and results
of the GTOC9 competition for the team from
the University of Colorado, Boulder. The goal
of the competition was to remove 123 pieces
of space debris for the lowest cost. The over-
all strategy for this team was: 1) Find the set of
all possible low-cost chains of debris to visit,
2) Pick from those to define a series of mis-
sions that visit most of the debris, 3) Stitch
the remaining 20-30 debris onto the existing
chains, 4) Add 1-4 more launches to reach the
5-10 debris that remain after stitching, 5) Ad-
just the dates of each mission slightly to mini-
mize ∆V , and 6) Find a series of four maneu-
vers to transfer from each debris to the next in
the fully-integrated dynamics. The final solu-
tion removed all 123 pieces of debris with 17
launches for a cost of 1150.8 MEUR.

∗Corresponding author. E-mail:
nathan.parrish@colorado.edu

1 Introduction
The GTOC9 competition defines a set of 123
pieces of debris that are in approximately
sun-synchronous orbits, with inclination near
98◦and semimajor axis near 7,000 km. The
motion of spacecraft is defined by numeri-
cally integrating Keplerian motion perturbed
by Earth’s J2 effect. The dynamics of debris
are given by mean motion and constant secular
drift rates of RAAN and argument of perigee.

We find that the secular drift of the Right
Ascension of the Ascending Node (RAAN)
due to Earth’s J2 is a primary driver for so-
lutions. The node drift rate is given by

Ω̇ = −3

2
J2

(req
p

)2
n cos i (1)

with semilatus rectum p = a(1−e2) and mean
motion n =

√
µ
a3

. Since the eccentricity of
all the debris pieces is nearly zero, the node
drift rate Ω̇ is mostly driven by inclination and
semimajor axis. For initial searches to find
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chains of debris that can be efficiently visited
by a single spacecraft, we choose to ignore
the drift of argument of perigee because of the
small eccentricity.

The goal of the competition is to remove all
of the debris for the minimum cost, where cost
in MEUR is given by

J =
n∑
i=1

[ci + 2 × 10−6(m0i −mdry)
2]. (2)

The launch vehicle cost ci grew linearly from
45 to 55 MEUR over the contest month. More
details on the competition rules are given in
[1].

We found that the greatest constraint on the
search space is on time of flight between de-
bris, as this limits the feasible transfers to de-
bris with similar RAAN. Figure 1 shows the
synodic periods of the RAAN of all the de-
bris. Most pairs of debris have long synodic
periods relative to the 8 year time limit of the
competition, so transfers are largely limited to
natural opportunities.

2 Analytical ∆V

Our first approach to finding low cost transfers
between debris objects was to look at the nat-
ural crossings of debris RAAN. These natural
node crossing points present opportunities for
low ∆V transfers between the two objects at
a given time. We initially hoped to be able
to solely use these natural node crossing to
build all missions, because that would require
relatively low-cost maneuvers for each trans-
fer. However, it soon became clear that this
approach was too limiting. To find more op-
tions for cheap transfers, we developed the fol-
lowing analytical approximations for the cost

Figure 1: The synodic periods (in years) of
the RAAN of each debris object relative to all
other debris objects. The debris are sorted by
inclination from low to high. Debris that differ
significantly in inclination have opportunities
for cheap transfers as frequently as every 1-
3 years. Debris with very similar inclinations
have synodic periods much longer than the 8
year time limit for the competition.

to transfer between any two debris. Trans-
fer ∆V s were found by first approximating
the change in node rate Ω̇ needed to force the
nodes of the two orbits to cross, and then by
approximating the ∆V needed to change in-
clination or semimajor axis to give the desired
∆Ω̇. The cost for matching the final target
inclination and semimajor axis was approxi-
mated as well. Finally, a cost for matching the
argument of latitude of the target debris at the
rendezvous time was also approximated for
greater overall accuracy, especially for trans-
fers performed in a short amount of time.

The change in RAAN rate ∆Ω̇ required to
force the nodes to cross was calculated by set-
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ting a fixed transfer time (20 days) and calcu-
lating the difference in Ω between the two de-
bris objects at the fixed rendezvous time. The
∆V required to achieve the desired ∆Ω̇ was
approximated by assuming circular orbits and
relatively small changes in either inclination
or semimajor axis. Under this assumption, we
get the following expressions for change of the
node rate corresponding to a change in inclina-
tion (∆iΩ̇) and to a change in semimajor axis
(∆aΩ̇).

∆iΩ̇ =
∂Ω̇

∂i
∆i (3)

= −Ω̇ tan i∆i (4)

∆aΩ̇ =
∂Ω̇

∂a
∆a (5)

= −7

2
Ω̇

∆a

a
(6)

We can then write a simple relationship be-
tween orbit element change and its corre-
sponding ∆V as follows:

∆i =

√
a

µ
∆V (7)

∆a = 2a

√
a

µ
∆V (8)

Combining the preceding equations gives us
final relationships between a desired ∆Ω̇ and
its corresponding ∆V .

∆Vi = ∆iΩ̇
2

3J2R2

a3

sin i
(9)

∆Va = ∆aΩ̇
2

21J2R2

a3

cos i
(10)

Interestingly, comparing the efficiency of
changing ∆Ω̇ with an inclination change vs
with a semimajor axis change by taking the
ratio ri/a = ∆iΩ̇/∆aΩ̇ shows that they are

equally efficient at tan i = −7, or i = 98.13◦.
For inclinations greater than 98.13◦ a semima-
jor axis change is more efficient, while an in-
clination change is more efficient for inclina-
tions less than 98.13◦. One important caveat
here is that for more aggressive maneuvers
such as those used in “stitching” (see section
4), the assumptions made here break down, so
∆V was instead approximated using the re-
quired change in orbit elements (equations 4
and 6). These changes were correlated to ∆V
using the vis-viva equation for semimajor axis
changes and using ∆Vi ≈ 2V sin(∆i

2
) for in-

clination changes. Both ∆V s were calculated
and the smaller of the two was selected as the
optimal transfer. The cost of the final inclina-
tion and semimajor axis matching maneuvers
were approximated using Hohmann transfers,
with the inclination change occurring at the ra-
dius of apoapsis of the orbit with the larger
semimajor axis. Finally, a ∆V associated with
the cost of matching the target argument of lat-
itude was approximated assuming circular or-
bits and ignoring the precession of the argu-
ment of perigee. This is somewhat inaccurate,
but achieved our goal of attaching a higher
cost to shorter transfers where matching the ar-
gument of latitude would be more expensive.

We found that the approximate ∆V was ac-
curate to within ±30% of the final integrated
transfer.

3 Building Blocks

With the analytical estimate for ∆V described
above, we then pre-computed all the possible
chains of debris with an efficient algorithm,
subject to the following assumptions: Trans-
fer time is exactly 20 days, the ∆V for each
debris-to-debris transfer is ≤ 500m/s, and the
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average ∆V of all the transfers in a chain is
≤ 200m/s. This resulted in approximately
500,000 chains of debris with between 5-10
debris per chain.

Every chain was sorted by the frequency
of the debris it contains, so that the debris
that appear least frequently in all of the pre-
computed chains are more likely to be se-
lected early in the algorithm, while the debris
that appear most frequently are left to the end.
This is guided by the intuition that frequently-
appearing debris will be easier to stitch on to
existing chains later.

These pre-computed chains were then com-
bined to contain the maximum number of de-
bris. A simple algorithm was developed to find
sets of chains that each contain unique debris
at unique times. The frequency criteria de-
scribed above was used to guide the selection
of chains, with some randomization.

4 The Stitcher

The building blocks algorithm was run several
thousand times, and it would typically find 10-
15 sets of chains that visit 75-95 of the 123
debris. The remaining debris were then left to
the “stitcher” to attach to these chains, one by
one.

4.1 The stitcher toolset

The stitcher toolset consisted of many rou-
tines, from computation of a single stitching
action at the lowest level, to entirely updat-
ing the campaigns at its highest level. At this
level, it would take as input a campaign, de-
fined as a set of N missions visiting K debris.
It would then proceed to attaching the remain-
ing debris to any of the missions. The stitcher

would end with two exit condition: if all debris
were successfully attached, or if it was impos-
sible to stitch some last debris to the already
existing missions.

We will describe two important aspects of
the stitcher: first how we optimized the low-
level stitching of a single debris attached to a
single mission, then how the high-level algo-
rithms handled these possible stitching into a
sorting tree to output the best result that we
could find.

4.2 Optimizing the stitching of a
single debris to a single mission

At the lowest level, one of the stitcher routines
consisted in optimizing the stitching of single
given debris to a single given mission. The
goal was to minimize the total ∆V for the mis-
sion.

Two options were possible. The first one,
simple fit, consisted in keeping the original
sequence of debris as is, and simply finding
where the debris would fit best. The initial
order of the mission was conserved, and the
additional debris simply inserted between any
two other debris. The complexity of this al-
gorithm was linear of the number of debris al-
ready attached to the chain, and made for a
very fast computation (usually on the order of
a few ms).

The second option was much more power-
ful but required much more time. It would fit
the debris anywhere in the chain, but also re-
order the chain. Because of the complexity of
the constraints between debris, we adopted a
brute force method for testing the reordering
of the chain: in practice, all possible arrange-
ments of the debris were tested. The second
option would thus call the “simple fit function
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K! times for a mission visiting K debris. The
algorithmic complexity was then quite puni-
tive for long missions. In effect, this option
was instantaneous for missions shorter than 6
debris, and would have taken more than a year
for missions longer than 13 debris. For this
reason, this option was never used, until the
very end of the competition: if the numerical
integrator failed to realize a planned mission,
this problematic mission was given back to the
stitcher. We would remove a debris and try to
stitch it back, with instruction to reorder the
mission. The result would generally lower the
required ∆V by a few hundreds of meters per
second and allow the numerical integrator to
make it into a real mission.

4.3 Finding the best stitching
The hard part of the stitching operation was
to decide what to stitch where. At this higher
level, the algorithm had a campaign of N mis-
sions, visiting K debris. Usually N was be-
tween 12 and 15 while the K would range be-
tween 75 and 90. Among the remaining 30-
50 debris, which one would be best to stitch
where and when?

Over the last two weeks of GTOC, several
versions of the algorithm were created, each
attempting to respond to the increasing com-
petition. The final version used involved a tree
search with partial randomization. Instead of
looking at a single campaign, we would create
alternate scenarios, depending on which de-
bris was stitched to which mission. The algo-
rithm would be manipulating a number of sce-
narios (10-20) at any given step. From each
of these, it would create many more (20-50)
for the next generation by trying out tens of
different stitchings to each of the manipulated
scenarios. Finally, it would select which sce-

narios to keep among the best ones with an el-
ement of randomness. The best scenarios were
determined as the ones with the lowest added
∆V (sometimes this ∆V would even be neg-
ative), as it usually output the longest chains
and lowest numbers of debris left after the al-
gorithm had run. Finally, at each step, the al-
gorithm would check that all considered sce-
narios were indeed different from each other,
as it was frequent to come back to the same
“best” solutions over and over.

Since there were many scenarios coexist-
ing at a given step in the search, we needed
to quicken our computation of the stitching of
each debris to each mission. To do so, we
would create a stitching matrix that would fol-
low a scenario and its children if they got se-
lected, meaning that many scenarios could be
explored at the same time for very little added
computation time. This matrix had 123 rows
and N columns, where N was the number of
missions (from 12 to 15 usually). Each cell
(k,n) of this matrix contained the information
on the stitching of debris k to mission n. A
stitching (cell) was recomputed if and only if
a modification to the other missions, through a
previous stitching, affected its feasibility.

Although the algorithm certainly dismissed
many good solutions too early, it still allowed
to reach for unexpected solutions that would
prove beneficial in the long term. It was how-
ever our impression that this exploration was
only as good as the criterion used to rank the
scenarios: “lowest added ∆V ” was a good
enough measure of optimality initially but it
appeared quite clearly that it was too greedy
an approach to capture the best solutions avail-
able. We were however unable to find a better
measure of optimality. It is likely that, given
a subset of each mission of the winning solu-
tion and only 40 debris left to place, this algo-
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rithm would still have missed the full winning
solution unless massive amounts of computa-
tion time, unrealistic for GTOC, had been ded-
icated to it.

In the end, this tree search with randomiza-
tion would output nearly-complete campaigns.
Usually there would still be 2-8 debris remain-
ing. Although it may have been possible to
stitch them through reordering, we did not
have the computational capabilities to perform
this operation for most missions. There was
therefore the need to “finish” the campaign
with additional missions.

5 The Finisher

The algorithm known as the “finisher” aims to
obtain a 123 debris campaign given the pre-
viously stitched chains and the spare pieces
of debris. In a certain way, it repeats the
first steps of computation using computational
brute force; i.e., considering a big portion of
the possible combinations between spares.

Firstly, we find the remaining time gaps in
which there are no missions scheduled. Then,
applying the time margins to be held due to
operational constraints, we now have the time
windows to compute transfer maneuvers be-
tween spare debris.

In the developed version of the code we
compute links between two pieces of debris.
This ∆V computation for varying transfer
times, initial times, debris objects and time
gaps is stored and sorted to find what we called
a solution of the “finisher”. A solution of the
finisher is a group of pairs that are compatible
with each other and combine as many pieces
of debris as possible.

We sort the solutions by total ∆V of the re-
spective maneuvers between the pairs found.

The next step is to use the “stitcher” [4] again
to reduce the number of missions of every so-
lution by stitching the remaining spares de-
bris of the solution. In the iterative call to the
stitcher[4] the spares plus some of the pairs
split as individual spares are tested, in an ef-
fort to reduce the total number of missions.
The combination of missions that minimizes
the total cost of the campaign is chosen.

6 The Wiggler

After creating missions, the dates of the inter-
mediate debris were slightly adjusted (“wig-
gled”) to maximize fuel savings. The mission
times were adjusted with MATLAB’s fmincon
optimizer to minimize the ∆V of the whole
mission. The debris at the beginning of the
mission and at the end of a mission were held
constant (to avoid inadvertently invalidating
other missions) while the dates of the inter-
mediate debris visited were allowed to change
from seven to twenty-nine days. The typical
result of the “wiggler” was to reduce the ∆V
of each mission by 2-10%.

7 Final Optimization Integration

A two-step algorithm was developed to tran-
sition from the approximate, analytical model
described above and the fully-integrated solu-
tion for submission. During the final optimiza-
tion and integration, the arrival times at each
debris were held fixed, and the transfer be-
tween each pair of debris was considered sep-
arately. The algorithm, variables, and series of
maneuvers are shown graphically in Figure 2.

The first step of the algorithm is to choose
maneuver ∆~V1 at time t1 so that the Right As-
cension of the Ascending Node (RAAN) Ω
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and argument of latitude u of the spacecraft
match the corresponding elements of debris
i + 1 at time t2. Time t1 is chosen to be the
time when the spacecraft’s argument of lati-
tude is equal to zero. We never use the propul-
sion system to directly change Ω — rather,
we change semimajor axis a, eccentricity e,
and inclination i to indirectly change Ω by
leveraging the natural dynamics. Maneuver
∆~V1 is defined in a VNC (velocity, normal,
co-normal) frame, with components in the V
and N directions. The component in the V
direction immediately changes the semimajor
axis and eccentricity of the spacecraft’s orbit,
while the component in the N direction im-
mediately changes the inclination. Only the
V component affects the argument of latitude
target, while both components have an indirect
effect over time on the RAAN target because
of the J2 dynamics. For a given number of
orbital revolutions, there is an exact solution
for the V and N components of the maneuver
that satisfy the constraints on Ω and u. After
performing ∆~V1, the spacecraft coasts for up
to approximately 25 days to state ~X2 at time
t2 (exactly three hours before the nominal ren-
dezvous with debris i + 1), which can be up
to approximately 400 orbital revolutions. The
number of orbital revolutions was chosen to
minimize the magnitude of ∆~V1. Later in-
sights revealed that it would be more optimal
to choose the number of orbital revolutions to
minimize the total ∆V , but it was not possible
to implement this given the time constraints of
the competition.

The second step of the algorithm is to
choose maneuvers ∆~V2, ∆~V3, and ∆~V4 to ad-
just the spacecraft orbit’s inclination, semi-
major axis, argument of perigee, and true
anomaly to rendezvous with debris i + 1. To
do this, we defined an optimization problem

with 8 variables: t23 (the forward propaga-
tion time after t2 until performing maneuver
∆~V2), t45 (the backward extra time from the
nominal arrival time at debris i + 1), the vec-
tor elements of ∆~V2, and the vector elements
of ∆~V4. We propagate forward (with numer-
ical integration) from time t2 to time t3 and
perform maneuver ∆~V2 at time t3. We also
propagate backward (according to the debris
dynamics) from t5 to time t4 and perform ma-
neuver ∆~V4 at time t4. We then shoot forward
from time t3 and backward from time t4, con-
straining the position discontinuity δ ~R34 to be
~0 and defining the velocity discontinuity to be
∆~V3. MATLAB’s fmincon optimizer is used
with the Interior Point algorithm to minimize
the total ∆V for maneuvers 2, 3, and 4 and
remove the discontinuity at the midpoint of
times 3 and 4.

It was found that the ∆V for the integrated
solution and for the analytical estimate agreed
well for transfers under 1 km/s. However, the
algorithm had difficulty converging to an op-
timal solution when the total ∆V exceeded
1 km/s. We expect that further refinements
to the final optimization algorithm could have
improved the cost of these high-∆V transfers,
but we also acknowledge that these high-cost
transfers could be removed entirely by better
pruning techniques in the analytical search.

The final solution submitted is shown in
Figure 3. We see that, as expected, each mis-
sion is largely chosen based on the RAAN of
each debris.

8 Discussion and Conclusions

Although the problem was definitely very hard
to solve, we think that many constraints ac-
tually narrowed the strategy possibilities. For
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Figure 2: Schematic showing the four maneuvers used in the final integration step to transfer
from one debris to another. The dates of arrival at debris i and i + 1 are held fixed. Black,
straight lines indicate motion according to the debris’ approximate equations of motion, while
blue, curved lines indicate motion according to numerically propagating the Earth J2 equations
of motion. The times t0 through t5 are indicated, with typical values given of each relative to
the previous time. The horizontal arrows indicate whether a segment was propagated forward
or backward.

instance, by limiting the number of days be-
tween debris to 30, it was not possible to have
a single mission waiting for an extended pe-
riod of time. The total duration and the num-
ber of debris already imposed a fast rhythm of
encounters (24 days on average), hence allow-
ing to wait between debris would have added
an interesting element or risk-reward: maybe a
mission can get one more debris if it waits for
60 days, but is the time wasted really worth it?

The real-time variation of the costs of each
mission was an interesting element of the
competition, but we feel it was ultimately a
distraction that, if anything, only benefited
those teams whose time availability happened
to coincide with the competition. In the end,
almost every team’s best solution was submit-
ted in the final hours, so there was no tangi-
ble advantage to submitting earlier. In a com-
plete solution, all the missions are tightly re-
lated to each other, so it is not practical to
submit one single mission early. Future com-
petitions could make better use of this time-

varying mechanic by making component parts
of the full solution more separable from the
whole. For example, if there were thousands
of debris, and each team were to remove only
some subset, then it would be feasible to de-
sign a single mission early in the competition
that did not interfere with other missions de-
signed later.

The leaderboard mechanic was very excit-
ing for the competition, and also helped our
team know what the ideal solution should look
like. Towards the end of the competition, we
were able to constrain our search space to be
similar to the best solutions on the leader-
board.

Team CU Boulder is grateful to Dr. Dario
Izzo for his work sponsoring a challenging,
well-organized competition. Thank you.
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Figure 3: The final solution of team CU Boul-
der. Each line series is a separate launch,
with 17 total. The clear trend apparent in the
RAAN of debris visited captures the driving
dynamic of the problem.
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