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Abstract

This paper presents the methods developed by
the MTU-UoM team in the 9th GTOC along
with the obtained results. Several concepts
were investigated, specially regarding the se-
lection of the sequence of debris to be re-
moved in each mission. These concepts will
be briefed in this paper and the concept that
produced this team’s best solution is presented
in some detail. Overall, genetic algorithms
is used as an outer loop optimization tool for
determining the sequence of debris to be re-
moved. An inner loop optimizer is used to
tune the individual transfers in each mission.
This team’s best solution consists of 16 mis-
sions that removes 122 debris with a cost of
1192.74 MEURs.

∗UM team lead. E-mail: etaheri@umich.edu
†MTU team lead. E-mail: ooabdelk@mtu.edu

1 Introduction

The GTOC9 problem description is detailed
in reference [5], and it is not presented here
to avoid duplication with other papers. The
overall goal is to remove 123 debris in a Low-
earth orbit (LEO); to avoid the Kessler effect
[6]. Some of the orbital elements of the de-
bris are very close to each other, whereas the
introduction of the J2 perturbation changes the
right ascension of the ascending node (RAAN)
and argument of perigee of the orbits (see Ap-
pendix).

For ideal Kepler orbits, it is possible to use
the well known Lambert solver to compute
the impulsive maneuver needed to rendezvous
with a debris, given the initial position of the
spacecraft, the final rendezvous position, and
the time of flight of the maneuver. Due to
the J2 effect included in this competition, this
tool cannot be used to compute an exact trans-
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fer. As a result, this team has developed a
modified Lambert solver during this compe-
tition that results in solutions that are closer
to the exact solution compared to the two-
body Lambert solver. As a result this modi-
fied Lambert solver enabled the optimizer to
find better solutions. This modified Lambert
approach is described in the Appendix. The
search for the best combination of missions re-
sulting in the lowest value of the cost function
was performed in two main steps. The first
step is a global search among the 123 debris
to generate individual missions in a sequential
manner. The number of the remaining debris
gets smaller as more missions are constructed.
Each mission consists of a number of legs;
each leg defines a trajectory between two de-
bris. Few different strategies were investigated
in this missions construction step.

In the strategy used in the submitted solu-
tion, the launch date and flight times of all
legs, for each mission, are the design vari-
ables of an optimization problem, in which
the goal was to minimize the the total impulse
value. Later the goal was to find the most effi-
cient missions defined by the ratio of the num-
ber of visited debris to the consumed propel-
lant. The optimization problem exploits so-
lutions to multi-revolution modified Lambert
problem.

The second step involves a local optimiza-
tion which is performed over the missions ob-
tained in the first step. Assuming a fixed se-
quence of debris, the design variables of the
local optimization are the launch date and the
flight times of all legs of an individual mission.
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Figure 1: Plot of Ω̇ versus Ω for the respective
epoch time of each debri.

2 Sequence of Debris
Given the large number of permutations of the
sequence of debris (large design space), it is
vital to exploit very rapid measures for con-
ducting a broad search to find the sequence of
debris in each mission. Several concepts were
investigated; here the most significant of them
are briefed and the concept used to generate
this team’s best solution is detailed at the end.

Semi-Free Rides
Generally speaking, plane-change maneuvers
are more expensive compared to in-plane ma-
neuvers. Two angles determine the plane: the
inclination and the RAAN. The inclinations of
the debris do not change due to the debris mo-
tion while the RAAN changes due to the J2 ef-
fect. So, the concept presented in this section
utilizes this change in the RAAN due to the J2
effect, to schedule rendezvous times when the
values of RAANs of two debris are very close;
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hence the spacecraft can wait with one debris
until a good time (when another debris has the
same RAAN) and then start a maneuver to ren-
dezvous with the new debris. The spacecraft
will then wait with the new debris until a new
debris achieves a RAAN that is close to the
spacecraft’s RAAN, and so on.

This concept generated a nice sequence of
debris with very low cost maneuvers; however
the time of flight in each maneuver is signif-
icantly high violating the 30 days constraint
defined in the problem description. As a result
the sequences generated using this approach
were not submitted.

The planes of all the Debris are changing
over time. We can compute the date at which
two arbitrary planes would have equal RAAN
as follows:

Ω1 = Ω10 + Ω̇1(T − Tepo1), (1)
Ω2 = Ω20 + Ω̇2(T − Tepo2), (2)

where Tepoi is the epoch date of debris i and
T is the current time. If we solve for Ω1 =
Ω2 + 2nπ, we will have:

T =
Ω20 − Ω10 + Ω̇1Tepo1 − Ω̇2Tepo2 + 2nπ

Ω̇1 − Ω̇2

.

(3)

The feasible range for the MJD of this prob-
lem is from 23467 to 26419. For the cases
when the date of the intersection is out of the
feasible range, the data is overwritten by a big
number.

Although we have the best date to maneu-
ver between the two planes, we still cannot
guarantee the spacecraft is exactly at the inter-
section point. In this work, it is decided that
a plane-change maneuver will only be con-
ducted when the spacecraft is close to the in-
tersection point of the two planes so that the

cost of the maneuver is lower. So then we
compute the time of wait unit the spacecraft
can reach the intersection point. The argument
of latitude of the intersection and the argument
of the spacecraft are computed:

Asc = ωsc + θsc, (4)
δΩ = Ωf − Ωi, (5)

cosα = cos ii cos if

+ sin ii sin if cos δΩ, (6)
sinAla = sin if sin δΩ/ sinα, (7)

where Asc is the argument of the position of
the spacecraft, the Ala is the argument of lat-
itude of the intersection. Ωf and Ωi are the
right ascension of the initial plane and the fi-
nal plane, respectively. ii and if are the incli-
nation of the initial plane and the final plane.
α is the angle of the plane change. When
we find Ala = Asc we can start the maneu-
ver. First a single-impulse plane change ma-
neuver is computed. Then an in-plane maneu-
ver is computed to rendezvous the spacecraft
with the debris. The combination of the previ-
ous two maneuvers is a two-impulse maneuver
that will rendezvous the spacecraft with the
debris. The cost of the plane-change maneu-
ver can be computed as:

∆V = 2Vi sinα/2, (8)

where Vi is the velocity of the spacecraft on
the initial orbit. The cost of the in-plane trans-
fer can be computed by solving Lambert prob-
lem. To have an initial guess for the real cost
of the in-plane transfer, we will hold the plane
still, and assume the spacecraft has the unper-
turbed Keplerian motion. Finally, the plane-
change maneuver and the departure cost of the
in-plane transfer will be combined. This com-
bined maneuver can also be obtained using the

3



modified Lambert algorithm presented in the
Appendix.

Hidden Genes Genetic Algorithms
In this approach, a hidden genes genetic al-
gorithm (HGGA) was implemented to carry
out a global search as opposed to a sequential
search. Details of the HGGA can be found in
[2, 3, 1].

To solve the problem, it can be divided
into several missions (mi) and in each mis-
sion some debris (Ndi) can be captured by a
spacecraft. In general, mi and Ndi are not
known a priori. If we assume that each mis-
sion is solved at a time, the only variable
that makes the problem a Variable Size De-
sign Space (VSDS) problem is the number of
debris at each mission. The design variables
in each mission are launch time, arrival time,
number of debris (Ndi), debris IDs (debris that
are captured in the mission), wait time, and
Deep Space Maneuvers (DSMs) direction and
magnitude.

The problem is solved in two phases. In
the first phase, the J2 effect is ignored and
launch/arrival time, time of flight, number of
debris, and debris IDs are optimized, and in
the second step, the effect of J2 is corrected by
adding a DSM in each leg. It is assumed that
there is no DSM in the first phase and there
is only one DSM in each leg in the second
phase. In the first phase, the Lambert problem
is solved to find the trajectory between each
two debris.

Assume that the current debris is Di and the
next debris isDi+1. At the end of the wait time
atDi and before the departure impulse, the po-
sition of the spacecraft is known (similar to the
position of debris Di). Since the time of flight
is known, the Lambert problem can be solved

to find the departure and arrival impulses. This
can be done for all the legs until the last debris
of the mission. After the first phase, the effect
of the J2 is corrected by assuming a DSM in
each leg. In this algorithm, debris selection is
done automatically and there is no need to cat-
egorize them into groups. The solution gener-
ated using HGGA was not competitive due to
the large design space that the HGGA needs to
work with.

Sequential Search
Our broad search strategy uses the remaining
fuel, where trajectories are built in a sequen-
tial manner by adding new legs. The maneu-
vers are already impulsive for which Lambert
problem with a bi-impulsive transfer is consid-
ered in the preliminary phase. In the final step,
the missions are optimized individually using
a local optimizer while taking into account the
J2 perturbation into the governing equations
of the spacecraft motion.

Some of the orbital elements of the debris
are very close to each other, whereas the in-
troduction of the J2 perturbation varies the
right ascension of the ascending node (RAAN)
and argument of perigee of the orbits (see Ap-
pendix). Therefore, the debris have different
values for Ω̇.

Figure 1 depicts the distribution of the data
points on the Ω̇ − Ω plot. A more important
factor, though, is the evolution of the of the
RAAN over certain time intervals for it is pos-
sible to glean closeness information (in terms
of RAAN) in order to form clusters of debris.
The evolution of the RAAN is a linear relation,

Ω = Ω0 + Ω̇× (t− t0), (9)

where Ω0 is the value of the RAAN at the
epoch time (t0). This linear relation can be
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utilized to construct a closeness criterion to
be used for clustering debris. On the other
hand, the number of debris considered in this
problem is significantly smaller than the in-
volved bodies of the previous GTOC prob-
lems. While the RAAN has a significant ef-
fect on the value of the impulses, initially,
we decided to look for generating a series of
missions that has the lowest value of cost.
Then, we would perform a post-analysis to
switch the debris between missions based on
the closeness of the RAAN.

Our primary broad search method was to
construct individual missions, in a sequen-
tial manner, by using a branch-and-prune tree
search algorithm. Each mission is built by
connecting a series of legs. The building up
of sequential legs consists of two main loops:
the first loop iterates over the departure debri
number and the second loop iterates over the
arrival debri number.

To find an optimal solution between each
pair of debris, a hybrid optimization method
is devised. First, a standard genetic algo-
rithm (GA) performs a broad search over the
departure time (MJDdep) and time of flight
(TOF ) within their defined ranges. The de-
parture time is defined in the rangeMJDdep ∈
[MJDLB,MJDUB] where the lower bound
and upper bounds of the departure time are
MJDLB = MJDarrival + Staytime and
MJDUB = MJDLB + 29, respectively. The
Staytime of 5 days is one of the constraints
necessary for deploying the de-orbiting pack-
age. In addition, the transfer time between any
two debris should not take more than 30 days.

The time of flight of each leg is also defined
in the range of TOF ∈ [TOFLB, TOFUB]
where the lower bound and upper bounds of
the time of flight are 0.1 × Torb and 5 × Torb.
Semi-major axis of the debris are relatively

close to each other and the period of their or-
bit is approximately the same. Therefore, we
defined the limits of the TOF in terms of the
average orbital period Torbit and its value is set
to 100 minutes. Two important parameters of
a GA are the number of generations and popu-
lations. We set those parameters to 20 and 50
respectively.

Eventually, the solution of the GA is used
as an initial guess for a local optimizer to fur-
ther reduce the cost function. For each leg, the
departure time (MJDdep) and time of flight
(TOF) are the two design variables, and the
optimization objective was to minimize the
summation of the two impulses,

J = min
MJDdep,TOF

∆V1 + ∆V2, (10)

where ∆V1 and ∆V2 are the values for im-
pulses at departure and arrival instances, re-
spectively. For the hybrid optimization we did
not define any constraint mainly due the fact
that the constraint handling is dealt with at the
final verification stage in which we use a local
optimizer. Each individual execution of GA-
Fmincon hybrid optimization takes on average
0.2 seconds (running on 8-cores).

The solution to the Lambert problem is used
extensively in the hybrid optimization method,
for which we used a multiple-revolution Lam-
bert solver [4] and set the maximum number
of revolutions to 5. In addition, we used a
compiled Mex file C++ implementation of the
Lambert solver. Note that the actual transfer
occurs during a short interval. This will sim-
plify the local optimization step during which
the accumulative effect of J2 perturbation be-
comes small.

Once a solution, which consists of indi-
vidual missions, was generated through the
broad search algorithm, we performed a post-
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analysis to modify the missions by perform-
ing two major changes. The first change was
to remove the last missions that may consist
of only one leg, i.e., single-leg missions and
to re-assign their debris to the previous mis-
sions. The second change was to inspect all
of the missions and remove those legs that re-
quired significantly greater values of impulse
compared to the other legs, and re-assign those
debris to other missions.

Debris Re-assignment

The re-assigning strategy that we considered
exploits the RAAN closeness which is ex-
plained in this section. For any debri which is
to be re-assigned, we calculated the closeness
criterion

η =

∑n
i (Ωdebri−to−assign(ti)− Ωdebri(ti))

2

n
,

(11)

where ti ∈ [MJDLB,MJDUB]. Note
that MJDLB and MJDUB correspond to the
lower and upper bounds of the mission MJD
time interval and are known values. We
adopted a simple equi-distant discretization of
the mission time interval. n is the number of
dicretization points (that depends on the step
size used for discretization), Ωdebri−to−assign is
the RAAN of the new debri, which is to be re-
assigned, evaluated at the descretized points
and Ωdebri is the RAAN of one of the debri
to which we compare the relative differences.
The minimum value of the closeness criterion
gives us a measure to assign any new debri to
a particular mission.

For instance, if there is a mission which
already contains 10 debris, we calculate the
above parameter by comparing the closeness
criterion between the new debri and each of

the 10 debris, and take the lowest value. Then,
we would repeat the same procedure for the
other missions and store the respective RAAN
closeness value. Finally, the minimum value
of η determines the mission to which we
should assign the new debri. The above steps
are followed for the other debris until all of
them are re-assigned. In addition, we can
avoid re-assigning new debris to the original
missions from which we picked them. This
will ensure that the debris are assigned to new
missions.

After performing the above steps, some of
the missions will be modified and a new tree-
search optimization is performed to achieve a
minimum-cost mission that visits all of the de-
bris within each mission. Another considera-
tion is to modify the allowed duration interval
of a mission to make sure that there is enough
time to visit all of the derbi within each mis-
sion. The task of modifying time is the tricky
part of assignment. However, the optimization
has to be performed over a reduced number of
debris within a mission (usually on the order
of 25 or less).

3 Results
The final solution consists of 16 missions
that deorbits 122 debri with a total cost of
1192.743 MEURs.

Tables 1 to 16 summarizes the individual
missions of the submitted solution. Note that
each row of the table only reports the dates
corresponding to the departure and arrival im-
pulse dates,MJDdep andMJDarrival, respec-
tively, between the departure debri number
and the arrival debri number. The spacecraft
de-orbits a considerable number of debris dur-
ing the first three missions. Despite our ef-
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forts to remove the last two missions and re-
assigning their debris into the previous mis-
sions, our tree-search algorithm was not capa-
ble of finding feasible missions after assigning
them to other missions.

Figure 3 depicts the variation of RAAN of
the debris visited in the first mission. Note that
the apparent separation of bands of lines with
similar slope is due to the fact that the angles
are not brought into the interval of [0, 2π]

Table 1: Summary of mission #1
MJDdep MJDarrival Dept. Deb # Arri. Deb #

23680.147 23680.175 19 61
23704.058 23704.303 61 107
23727.367 23727.547 107 30
23736.618 23736.734 30 85
23764.976 23765.083 85 41
23782.362 23782.529 41 45
23789.213 23789.415 45 11
23801.012 23801.203 11 82
23816.460 23816.490 82 71
23844.768 23844.932 71 115
23867.137 23867.386 115 43
23873.892 23874.146 43 47
23900.408 23900.656 47 26
23918.438 23918.679 26 109
23929.680 23929.868 109 7
23958.427 23958.531 7 2

Table 2: Summary of mission #2
MJDdep MJDarrival Dept. Deb # Arri. Deb #

24007.834 24008.027 72 51
24014.289 24014.398 51 10
24020.713 24020.965 10 69
24037.514 24037.657 69 66
24046.992 24047.242 66 73
24074.129 24074.159 73 28
24099.494 24099.639 28 64
24115.494 24115.684 64 52
24144.436 24144.732 52 12
24166.146 24166.399 12 3
24193.416 24193.677 3 31
24202.086 24202.332 31 65
24227.436 24227.702 65 91

Table 3: Summary of mission #3
MJDdep MJDarrival Dept. Deb # Arri. Deb #

24279.950 24279.998 81 13
24288.991 24289.174 13 32
24315.744 24316.037 32 22
24331.734 24331.777 22 17
24352.800 24353.076 17 105
24381.354 24381.452 105 59
24404.094 24404.245 59 98
24426.367 24426.654 98 46
24444.178 24444.216 46 83
24467.346 24467.380 83 48
24495.328 24495.623 48 99
24504.925 24505.101 99 96
24533.435 24533.635 96 114

Table 4: Summary of mission #4
MJDdep MJDarrival Dept. Deb # Arri. Deb #

24593.279 24593.535 0 122
24622.047 24622.337 122 74
24640.378 24640.552 74 119
24667.886 24668.010 119 104
24674.232 24674.284 104 24
24680.834 24681.046 24 108
24707.583 24707.619 108 37

Table 5: Summary of mission #5
MJDdep MJDarrival Dept. Deb # Arri. Deb #

24769.598 24769.714 55 93
24779.413 24779.534 93 100
24801.111 24801.140 100 90
24807.694 24807.994 90 9
24815.556 24815.841 9 33
24842.602 24842.728 33 21
24853.887 24854.082 21 106
24871.127 24871.394 106 68
24893.691 24893.833 68 118
24917.925 24918.101 118 113
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Table 6: Summary of mission #6
MJDdep MJDarrival Dept. Deb # Arri. Deb #

24966.805 24967.058 76 27
24974.934 24975.190 27 20
24996.868 24997.089 20 102
25021.045 25021.332 102 80
25033.293 25033.326 80 121
25062.310 25062.567 121 116
25087.865 25088.165 116 4
25115.532 25115.757 4 15

Table 7: Summary of mission #7
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25159.145 25159.411 35 1
25167.633 25167.878 1 40
25173.101 25173.358 40 62
25187.643 25187.861 62 54
25212.934 25213.041 54 89
25239.149 25239.255 89 112
25263.523 25263.714 112 87

Table 8: Summary of mission #8
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25327.371 25327.669 60 103
25341.232 25341.436 103 39
25346.811 25347.072 39 5
25371.826 25372.103 5 53
25377.357 25377.602 53 101
25400.698 25400.955 101 78

Table 9: Summary of mission #9
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25447.187 25447.477 110 79
25473.209 25473.464 79 34
25485.266 25485.520 34 97
25510.400 25510.575 97 50
25535.869 25536.150 50 86
25542.053 25542.285 86 6

Table 10: Summary of mission #10
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25584.694 25584.991 25 94
25594.707 25594.828 94 120
25618.420 25618.691 120 38
25623.691 25623.839 38 42
25641.463 25641.636 42 56
25653.755 25653.820 56 111

Table 11: Summary of mission #11
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25710.022 25710.291 95 8
25734.377 25734.542 8 49
25739.921 25740.060 49 84
25746.989 25747.024 84 36
25769.358 25769.460 36 75

Table 12: Summary of mission #12
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25871.606 25871.896 88 117
25877.672 25877.972 117 18
25884.791 25885.050 18 70

Table 13: Summary of mission #13
MJDdep MJDarrival Dept. Deb # Arri. Deb #

25933.550 25933.729 14 58
25962.043 25962.246 58 63

Table 14: Summary of mission #14
MJDdep MJDarrival Dept. Deb # Arri. Deb #

26098.760 26099.087 57 67
26107.636 26107.911 67 44

Table 15: Summary of mission #15
MJDdep MJDarrival Dept. Deb # Arri. Deb #

26151.463 26151.788 77 29

Table 16: Summary of mission #16
MJDdep MJDarrival Dept. Deb # Arri. Deb #

26205.748 26206.085 23 16
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Figure 2: Evolution of RAAN of the de-
bris of the first mission MJD2000 ∈
[23672.248, 23963.531].
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4 Conclusion
Team MTU-UoM employed a set of tools
which were sufficient to find a good solution
to GTOC9 problem. A major enhancement
would have been to utilize an efficient tree-
search algorithm. In addition, it would be
ideal to perform, early on, a clustering strategy
in terms of the right-ascension of the ascend-
ing node, and then focus on visiting the debris
within each cluster. In addition, for each mis-
sion, plot of Ω̇ − Ω is helpful in fixing the se-
quence of debris (transfers) and consider only
the stay time and the time of transfer as de-
sign variables. The debri re-assignment strat-
egy that we considered during the competition
time can be performed more efficiently.

Although we made progress in GTOC9,

there is a considerable gap between our solu-
tion and the top-rank teams. There are still a
lot of works for us to do in trajectory design
and optimization. We have only used personal
desktop computers and exploited parallel ca-
pability of MATLAB running our codes on
eight cores. It is reasonable to run our codes
on clusters with access to a greater number of
cores. We should also consider developing our
codes on compiled programming languages,
such as C or Fortran. In addition, develop-
ing a capable local optimizer (other than MAT-
LAB’s fmincon) is quite important for achiev-
ing improved solutions.
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Appendix: Modified Lambert
Solver
The Lambert solver finds the bi-impulse ma-
neuver necessary to rendezvous with a debris
given the initial spacecraft position, the final
rendezvous position, and the time of flight
of the maneuver, assuming Keplerian motion.
Due to the oblateness of the Earth, the keple-
rian motion will be perturbed by the J2 effect.
The J2 effect will influence the right ascen-
sion, the argument of the perigee and the mean
anomaly. The latter was neglected in GTOC 9.

Ω̇ = −3

2
J2(

req
p

)2n cos i, (12)

ω̇ =
3

4
J2(

req
p

)2n(5 cos2 i− 1). (13)

The change rate of Ω and ω is linear.

Ω− Ω0 = Ω̇(t− t0), (14)

ω − ω0 = ω̇(t− t0). (15)

To solve the two-body transfer problem with
the J2 effect, the following strategy is devel-
oped. For a two-body transfer problem with-
out J2 effect and with the date of the departure,

the arrival and the fixed time of flight (TOF),
usually Lambert problem is used to find the
transfer orbit. The required impulse for the de-
parture ∆vd and the arrival ∆va can be calcu-
lated. However, the problem under study takes
into account the J2 effect. Here, the solution
obtained from Lambert is used as initial guess.
An optimization algorithm will be introduced
here for solving the perturbed transfer orbit.
The objective function is constructed as:

J = ‖~rasc − ~raDebris‖, (16)

where ~rasc is the position vector of the space-
craft at the final time which is also the arrival
time. ~raDebris is the position vector of the de-
bris at the arrival time. The goal of the op-
timization is to minimize the objective func-
tion which means we want to satisfy the ren-
dezvous condition. The variables to be opti-
mized is ~vdsc, the velocity of the spacecraft at
departure time. The optimization algorithm is
setup as:

Min : J = ‖~rasc − ~raDebris‖,
s.t :

ẍ = −µx
r3

(1 +
3

2
J2(

req
r

)2(1− 5
z2

r2
)),

ÿ = −µy
r3

(1 +
3

2
J2(

req
r

)2(1− 5
z2

r2
)),

z̈ = −µz
r3

(1 +
3

2
J2(

req
r

)2(3− 5
z2

r2
)),

‖~rasc − ~raDebris‖ < 0.1,

where the first three constraints represent the
perturbed Keplerian motion. The last con-
straint is for the rendezvous condition - the
difference between the position of the space-
craft and the position of the debris cannot be
bigger than 0.1 km. Due to the J2 effect,
if we propagate the perturbed trajectory with
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the ~vdsc obtained from original Lambert solu-
tion, the final position of the spacecraft does
not reach ~raDebris. To take advantage of J2
effect, the Lambert problem can be used to
solve the transfer orbit between ~rdsc and ~ratemp.
A temporary position ~ratemp is computed from
a modified set of orbital elements. Assume
the orbital elements at the arrival time are
[aa, ea, ia, Ωa, ωa, Ma]T . The modified or-
bital elements are computed from:

Ωtemp = Ωa − Ω̇T , (17)
ωtemp = ωa − ω̇T, (18)

where T is the time of flight. So the temporary
position is computed from the modified orbital
elements: [aa, ea, ia, Ωtemp, ωtemp, M

a]T . In
this competition, Ω̇ is always a positive num-
ber while ω̇ is always negative. If Ωa is greater
than Ωd which is the right ascension of the
orbit before we apply the departure impulse
which means we have the possibility to take
advantage of J2 effect. After we compute
Ωtemp, if we found Ωtemp > Ωd, then we are
able to apply the modification for the orbital
elements, otherwise we will apply Ωtemp =
Ωd. If Ωa is smaller than Ωd, which means we
are moving against J2 effect, the modification
for the orbital elements would not be applied,
we will have Ωtemp > Ωa. Since ω̇ is nega-
tive, so the opposite algorithm will be applied
to compute ωtemp. The description above can
be summarized as

if Ωa < Ωd then
Ωtemp = Ωa

else
if Ωtemp > Ωd then

Ωtemp = Eq. (17)
else

Ωtemp = Ωd

end if

end if
if ωa > ωd then
ωtemp = ωa

else
if ωtemp > ωd then
ωtemp = ωd

else
ωtemp = Eq. (18)

end if
end if
So the above logic along with the Eqs. (17)

and (18) will be applied to compute the tem-
porary position. The Lambert problem will
be solved between the initial position and the
temporary position. The solution from Lam-
bert problem will be taken as the initial con-
dition of the optimization. Finally, we can
use Eq. ((17)) to optimize the velocity of the
spacecraft at the departure point to reach the fi-
nal position. The solution will be the real cost
of the perturbed transfer between two points.
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