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Abstract:  The ninth edition of the Global Trajecto-

ry Optimization Competition (GTOC) series was 

successfully organized in April 2017, wherein the 

competitors were called to design a series of missions 

able to remove a set of 123 orbiting debris pieces 

while minimizing the overall cumulative cost. A 

three-level optimization framework is presented to 

solve the complex problem, which combines the dy-

namic Travelling Salesman Problem (TSP), 

mixed-integer sequence optimization and perturbed 

trajectory rendezvous optimization. The framework 

was employed by the NUDT team during GTOC9, 

and the corresponding result ranked second in the 

eventual leaderboard.  

I. Introduction 

The design of space trajectories can be profita-

bly approached as a global optimization problem. The 

optimal trajectory, which is significant for practical 

space mission design, is usually very difficult to be 

obtained. The Global Trajectory Optimization Com-

petition (GTOC) series [1], was born with the objec-

tive of fostering research in this area by letting the 

best aerospace engineers and mathematicians world-

wide challenge themselves to solve one, difficult, 

well-defined, problem of interplanetary trajectory 

design. 

The GTOC9 [2] was successfully organized in 

April 2017 by the Advanced Concepts Team (ACT) 

of European Space Agency (ESA), who won the 

GTOC8. For calling to protect the environment of 

earth orbits, the background of the GTOC problem is 

put in the near-earth space for the first time. The 

competitors are called to design a series of missions 

able to remove a set of 123 orbiting debris pieces 

while minimizing the overall cumulative cost. 

To find the optimal solution of such a complex 

problem, three sub-problems need to be extracted and 

solved. 1) First, the set of 123 debris pieces needs to 

be divided into several groups. Each group of debris 

is removed by one mission. Optimization is per-

formed to minimize the overall cumulative cost. This 

can be approached as a dynamic TSP and solved by 

some evolution algorithm [3]. 2) Second, given a 
group of the debris, one mission is designed by 

mixed-integer optimization to remove them while 

costing minimal velocity increment [4]. 3) Finally, 

given the current and next debris as well as the ren-

dezvous duration, the impulsive maneuver strategy is 

designed to produce the optimal flight trajectory [5]. 

This paper presents a three-level optimization 

framework to solve the above problem. The frame-

work was employed by the team of National Univer-

sity of Defense Technology(NUDT) in GTOC9. The 

result ranked second in the eventual leaderboard, only 

behind the amazing result from Jet Propulsion Labor-

atory (JPL).  

II. Problem Statement 

A. Problem Description 

Since the launch of the first satellite, Sputnik, in 

1957, mankind has placed countless spacecraft in 

orbit around the Earth. Today, less than 10% of the 

trackable objects orbiting the Earth are operational 

satellites. The remainder is simply junk, and this 

space debris is becoming an increasingly serious 

problem. Following the unprecedented explosion of a 

Sun-synchronous satellite, the Kessler effect triggered 

further impacts and the Sun-synchronous orbits envi-

ronment was severely compromised [2]. Scientists 

from all main space agencies and private space com-

panies isolated a set of 123 orbiting debris pieces that, 

if removed, would restore the possibility to operate in 

that precious orbital environment and prevent the 

Kessler effect to permanently compromise it.  

Therefore, the problem of GTOC9 is to design n 

missions able to cumulatively remove all the 123 or-

biting debris while minimizing the overall cumulative 

cost of such an endeavor. One mission is a multi-

ple-rendezvous spacecraft trajectory where a subset 

of size N of the 123 orbiting debris is removed by the 

delivery and activation of N de-orbit packages. The 

following cost function has to be minimized:  
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where Ci is the cost charged by the contracted 

launcher supplier for the ith mission. At the beginning 

of the ith mission, 0i
m  is the spacecraft mass and 

drym  its dry mass. Each spacecraft initial mass 0m  

is the sum of its dry mass, the weights of the 1N   

de-orbit packages to be used and the propellant mass: 

0 dry de pm m Nm m   . All spacecraft have a dry mass 

of 2000drym   [kg] and a maximum initial propel-

lant mass of 5000pm   [kg] (less propellant may be 

used, in which case the launch costs will decrease). 

Each de-orbit package has a weight of 30dem   [kg]. 

The   parameter is set to be 62.0 10    
2[ / ]MEUR Kg . submissiont  is the epoch at which the 

thi  mission is validated, and endt  and startt  are the 

end and the beginning epochs of the GTOC9 compe-

tition. The minimal basic cost mc  is 45 MEUR, 

while the maximum cost Mc  is 55 MEUR. The other 

detailed constraints defined by the organizer are giv-

en in [2].  

During each transfer between two successive 

debris, the spacecraft dynamics is described, by a 

Keplerian motion perturbed by main effects of an 

oblate Earth, i.e. 2J .  
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where [ , , ]Tx y zr  and [ , , ]T

x y zv v vv  are the 

spacecraft’s position and velocity vector described in 

the mean equator inertial coordinate system of the 

center body, || ||r  r , ||∙|| denotes the Euclidean norm 

of a vector,  , ER  and J2 are the gravitational con-

stant, mean equator radius and J2-perturbation coeffi-

cient of the central body respectively. Γ  is the 

thrust acceleration. 

The only maneuvers allowed to control the 

spacecraft trajectory are instantaneous changes of the 

spacecraft velocity (its magnitude being denoted by 

V . After each such maneuver, the spacecraft mass 

is to be updated using Tsiolkovsky equation:  

exp ,f i

e

V
m m

v

 
  

 
       (3) 

where 0e spv I g . A maximum of 5 impulsive veloc-

ity changes is allowed during each transfer between 
two successive debris. These do not include the de-

parture and arrival impulse.  

According to Eq. (1), the following three steps 

are required to compute the cost function of GTOC9 

problem.  

Step 1): Determine the number of missions (i.e. 

n) and the number of debris in each mission (i.e. iN ), 

so that 
1

123
n

ii
N


 .  

Step 2): Determine the rendezvous sequence 

from debris to debris in one mission.  

Step 3): Determine the transfer trajectory from 

debris to debris in one mission, i.e., to compute the 

maneuver time and impulses so that the spacecraft 

can sucessfully transfer from the first debris to the 

last one under the given constraints.  

As an intermediate procedure, Step 2) and be 

handled together with Step 1) or with Step 3). In or-

der to efficiently obtain a near-optimal solution, we 

solve the GTOC9 problem using all of these three 

steps, they are introduced in Secs. IV, V, and VI, re-

spectively.  

B. Problem Analysis 

The GTOC9 problem is to design a series of 

missions with minimal propellant costs, for the objec-

tive of removing the given 123 orbiting debris. In 

order to find the optimal debris-removal plan, the 

following three sub-problems must be addressed:  

1）How to plan the successive removal missions? 

2）How to minimize the cost of a single mission? 

3）How to optimize the trajectory between each 

two debris? 

The first sub-problem is a large-scale mul-

ti-sequence combinatorial optimization problem, 

which is similar to the combination of the classic 

travelling salesman problem (TSP) and bin packing 

problem (BPP). The TSP is to find a closed mini-

ma-distance path, with the constraints that all nodes 

should be visited once and only once. The BPP is to 

find the minimum number of packages, so that all the 

items can be packed. However, compared with TSP 

and BPP, the following differences make this 

sub-problem more difficult.  

In the BPP, only weight constraints need to be 

satisfied, and the sequence of each item does not af-

fect the weight of a package. However, for the 

GTOC9 problem, both the items (debris) themselves 

and their package sequence will significantly affect 

the cost function, which makes the solution space 

much larger than BPP, and thus leads to difficulties 

on optimization.  

Additionally, in comparison to the TSP, the 

GTOC9 problem can be divided into an unlimited 

number of missions, and the route of debris removal 

can be discontinuous between every two missions. 

Once again it makes the solution space of this prob-

lem much larger than the TSP, and increases the dif-
ficulties of optimizing as well.  

In the TSP, all the nodes to be visited are fixed in 

the plane and the cost of going from one node to an-
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other can be easily calculated according to the Carte-

sian distance in the plane. While for the GTOC9 

problem, the cost of going from one debris to another 

depends on the respective starting date and arrival 

date. This further makes the problem time-dependent 

and difficult.  

The second sub-problem is a mixed-integer non-

linear-programming (MINLP) problem, in which both 

the sequence (integer variables) of the debris and the 

transfer times (real variables) between every two de-

bris need to be regarded as design variables. There-

fore, it becomes more difficult to solve than either 

mixed-integer linear-programming (MILP) cases and 

nonlinear-programming (NLP) cases. 

The third sub-problem is an orbital transfer 

problem. With the authors’ best knowledge, it is al-

most impossible to accurately compute the V  and 

the detailed maneuver plan ( , ), 1,2,...,i it i K v  in 

sub-problems 1) and 2) in a personal computer, due to 

the huge computation time. The best choice is to ap-

proximately estimate the V  cost in sub-problems 1) 

and 2) to efficiently determine the number of mis-

sions and the rendezvous sequence in each mission, 

then to optimize the accurate maneuver plan 

( , ), 1,2,...,i it i K v .  

There are two challenges in solving the third 

sub-problem. First, it is difficult to estimate the V  

cost and the flight time ft  with a relatively high pre-

cision for a single rendezvous mission between two 

debris. This is because that a big the right ascension 

of ascending node (RAAN) difference may exist be-

tween two debris, and the economic way to correct 

this big out-of-plane difference is to make use the 

natural orbital precession rate due to the central 

body’s J2-perturbation [7]. As a result, the in-plane 

maneuvers couples with the out-of-plane maneuvers, 

and a compromising exists between the rendezvous 

time ft  and the V  cost. If no optimization is 

permitted for the consideration of computation time, 

an accurate estimation of  ft  and V  is a chal-

lenging work. We will introduce our estimation 

method in Sec. IV.C.  

Secondly, it is difficult to find the optimal solu-

tion for the long-duration ( ft  is up to 30 days) 

J2-perturbed rendezvous problem. When the 

J2-perturbation is taken into account, the well-known 

orbital targeting algorithms such as the Lambert algo-

rithm will be failed in obtaining the feasible solutions, 

and the constrained optimization methods which can 

directly corporate final state constraints, such as the 

sequential quadratic programming (SQP), will also 

encounter convergence problems for long-duration 

rendezvous. From the scope of orbital dynamics, at 

least two impulses are needed to target the final posi-

tion and velocity vectors. However, the total velocity 

increment of the 2-impulse maneuvers will be very 

large for a rendezvous mission, especially for 

long-duration, large non-coplanar rendezvous prob-

lems. Therefore, a rendezvous mission usually uses 

more than two impulses. Due to the long-duration, 

multi-impulse characteristics, the design variables 

(e.g. the maneuver time) have large search space, and 

many sub-optimal solutions may exist, thus it is dif-

ficult to find the global optimal solution for this 

problem even though the state-of-art optimization 

algorithm is used. In addition, numerical integration 

of the J2-perturbed trajectory is required in the opti-

mization process, which makes the optimization 

time-consuming. The feasible optimization approach 

we used will be presented in Sec. VI.  

 

Top Level Middle Level Bottom Level

Divide all of the 

debris into several 

missions

Reoptimize the 

debris chain for each 

mission

Optimize the 

accurate transfer time 

and characteristic 

velocity

Several debris 

chains with an

original sequence

One debris chain

with an optimized 

sequence and 

transfer  time

 
Figure 1  Interaction process among the three levels 

 

III. Optimization Framework 

Based on the analysis in Sec. II, the whole opti-

mization framework is mainly divided into three lev-

els, which is illustrated in Fig. 1: 

 Top Level: Divide all the debris into several 
missions, with each mission having a group 

of sequentially numbered debris.  

 Middle Level: For a single mission, reopti-

mize the rendezvous sequence of the debris, 

this rendezvous sequence can be different 

from the one obtained in the up-lever.  

 Bottom Level: Optimize the accurate trans-

fer time and characteristic velocity for each 

rendezvous from one debris to another. 
Three separated optimization models and algo-

rithms are developed for each level, which are all 

encoded in C++ and some codes are paralleled using 
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MPI. For the top-level problem, we use the De-

bris_Chain_Bunching Ant Colony Optimization 

(DCB_ACO) algorithm, it is improved based on the 

classic ACO used for the successive debris-removal 

mission. A hybrid-encoding Genetic Algorithm 

(HEGA) is used in the middle level to simultaneously 

determine the sequence and the referenced transfer 

time a single rendezvous mission. For the bot-

tom-level problem, a differential evolution (DE) al-

gorithm together with a J2-perturbed orbital targeting 

technique is used to optimize the orbital transfer tra-

jectory. 

IV. Multiple Missions Optimization 

The main task of this level is to divide the debris 

into several debris chains. An ACO variant for 

bunching debris chains is improved to solve this op-

timization sub-problem. 

A. Classic ACO 

The ACO algorithm was originally inspired by the 

ability of biological ants to find the shortest path be-

tween their nest and a food source [7]. The funda-

mental working procedure of the Classical ACO, 

known as Ant System (AS), is shown in Algorithm 1.  

Algorithm 1 

Ant System 

Pheromone trail initialization; 

while Termination criteria not met do 

Solution construction; 

Pheromone update; 

end while 

 

B. DCB_ACO 

The fundamental procedure of DCB_ACO is simi-

lar to the classic ACO. The most important feature of 

an ACO is the design of the heuristic, which is even-

tually combined with the pheromone information to 

build solutions. We mainly present the heuristic and 

solution construction method of DCB_ACO in this 

part. 

Every ant starts with a same set of debris (the de-

bris that have not been removed are stored in an array 

V ). For each ant, building a feasible solution should 

take the following steps. 

Step 1: Set 0=T T  (MJD) as the start time. 

Step 2: Initialize a new empty debris chain. Ran-

domly select a debris from V  and set it as the head 

of the chain. Delete the corresponding debris in V . 

If V  becomes empty, go to step 8; otherwise, go to 

step 3.  

Step 3: Starting from T , Estimate the orbital 

transfer time liT  and the characteristic velocity 

liV  between the last debris lV  in the current chain 

and all remaining debris in V . Go to step 4.  

Step 4: Copy all of the candidates that qualify for 

being bunched to the tail of the current chain from 

V  and deposit them into an array U . If U  is 

empty, go to step 7; otherwise, go to step 5. 

Step 5: Randomly select a debris dV  from U , 

delete the corresponding debris in V  after being 

bunched to the tail of the current chain. Go to step 6.  

Step 6: Clean up U , set = + ldT T T  and return to 

step 3.  

Step 7: Close the current chain. If V  becomes 

empty, go to step 8; otherwise, set = + MT T T  

( [35 ,65 ]MT rand day day  ) and return to step 2.  

Step 8: Finish bunching, collect all of the accom-

plished debris chains. 

In step 3, the optimal transfer time and characteris-

tic velocity between each two debris are estimated 

based on the method presented in Sec. IV.C. 

In step 4, the candidate refers to all of the debris in 

V  that satisfy the total fuel constraints for one mis-

sion after being bunched to the tail of the chain.  

In step 5, the probability that an ant k will choose a 

debris j as the next debris for the current chain b in 

the partial solution s is given by 

( , )

,    ( , )

( )=

0                       

k

bj j k

k
bg g

bj
g U s b

j U s b

p s

otherwise





 

 


 
 





  (4) 

where ( , )kU s b , coming from step 4, is the set of de-

bris that qualify for bunching behind the current chain 

b and =j ljV   is the heuristic value. The parameter 

  in Eq. (4) is fixed to 1 here because using the pa-

rameter   is sufficient to reflect the weight between 

the pheromone information and heuristic information. 

bj  is the pheromone from debris l to debris j, where 

debris l is the last debris in the current chain b. 

In step 6, ldT  is the estimated optimal transfer 

time between the last debris lV  in the current chain 

and the selected debris dV .  

In DCB_ACO, the evaporation parameter ρ is set 

as 0.05and the increase of the pheromone k

ij  is 

limited to the maximum value of 0.1* ij  to avoid 

premature convergence. 

C. Analytical Estimation of Transfer Time 

and ΔV Cost 

To efficiently evaluate the objective function of 

each pack and the overall cumulative cost, an analyt-

ical estimation model is presented based on the 

Gauss’s form of variational equations [8].  
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   (5) 

where the mean motion 
3

n
a


 , the semilatus rec-

tum  21p a e  . 

1) Adjustment of the RAAN difference 

The difference of the RAAN drift velocity be-

tween the spacecraft and the debris should be fully 

used. If the RAAN difference cannot be corrected 

naturally during the maximum rendezvous duration, 

an impulse perpendicular to the orbital plane can be 

implemented at the north or south vertex of the orbit. 
2 21 sin

h

na e i
v

r


          (6) 

2) Adjustment of the inclination difference 

As the J2-perturbation does not change the or-

bital inclination, the inclination difference must be 

corrected by maneuvers. An impulse perpendicular to 

the orbital plane can be implemented at the ascending 

node or descending node. 

2 sin
2

ih
v

r


        (7) 

where 2h r  ,   is the argument of latitude. 

3) Adjustment of the semimajor axis and eccen-

tricity 

After the spacecraft transfers to the same orbital 

plane with the debris, the semimajor axis and eccen-

tricity are adjusted by two tangential impulses, re-

spectively at the perigee and apogee. For a near cir-

cular orbit, omitting the high order terms of 2e , the 

velocity increment of the two impulses is formulated 

as follows. 

2

ea a e
v n

  
         (8) 

4) Estimation of rendezvous duration 

The rendezvous duration should mainly come 

from the adjustment of the RAAN difference so as to 

make full use of the natural RAAN drift due to 

J2-perturbation. The following adjustments do not 

need too much time. To be conservative, the rendez-

vous duration is roughly estimated as the duration for 

RAAN adjustment plus one day. 

What’s more, it may be noticed that the adjust-

ment of phase difference is not included. Considering 

that the rendezvous duration usually lasts for several 

days, the velocity increment costed by phase differ-

ence adjustment prefers to be much less than the ve-

locity increments of the other adjustments. To be 

conservation, an upper bound for phase difference 

adjustment can be directly added on the estimation 

result. 

V. Single Mission Optimization 

A. Optimization Model 

There are two types of design variables. A solu-

tion Y is made up of a group of serial integers 1Y  

and a set of real numbers 2Y  that consists of ren-

dezvous orbital transfer times and service times. 

1 2( , )Y Y Y               (9) 

where 1 1 2( , ,... )Np p pY  and 2 1 2( , ,... ;Ndur dur durY  

1 2, ,... )Nser ser ser .  

Through the sequence of its elements the serial 

integer vector 1Y  represents a service order. The 

search space of 1Y  is therefore discrete and its ele-

ments must be manipulated in combination. 

The objective is to minimize the propellant con-

sumed by orbital maneuvers: 

2 0min  ( )dry def m m Qm       (10) 

where drym  is the spacecraft’s mass after the last 

removing mission and also denotes the spacecraft’s 

dry mass.  

B. Solving Strategy 

Denote the state of a spacecraft as 

1 2( , , , , , )Ta q q i E         (11) 

where a  is the semi-major axis, i  is the orbital in-

clination,   is the RAAN,   is the mean argument 

of latitude, e  is the eccentricity,   is the argument 

of perigee, and 1 cosq e   and 2 sinq e   are the 

modified orbital elements suitable for describing 

near-circular orbits. 

The state variable used to express orbital differ-

ences between the spacecraft and one debris is 

1 2( / , , , , , )T

ra a q q i      X   (12) 

where the subscript “r” denotes the reference orbit, 

a  is the difference in semi-major axis,   is the 

difference in argument of latitude, i  is the differ-

ence in orbital inclination,   is the difference in 

RAAN, and 1q  and 2q  give the differences in 

eccentricity vector. 

Using first order approximations in the 

thq rendezvous operation, the state transitions of or-

bital element differences under the 2J  perturbation 

are given by [9]  



 

 6 / 9 

 

2

0 0

1

( ) ( ) ( , )qf q v qj qj qj

j

t t t u


    X Φ X Φ v  (13) 

2 2

2 2

2

0 0 0

0 0

0

0 0

0 0

1 0 0 0 0 0

3 7
(3 4sin ) 1 0 0 4 sin(2 ) 0

2 2

0 0 cos( ) sin( ) 0 0
( )

0 0 sin( ) cos( ) 0 0

0 0 0 0 1 0

7
cos 0 0 0 sin 1

2

r q r q r q

J q J q

q

J q J q

r q r q

n t C i t C i t

t t
t

t t

C i t C i t

 

 

 
 
       
 
   
  
  
 
 
 
  
 

Φ   (14) 

 
2 2

2 2

2

0 2 0

0 3 7 (3 4sin ) 4 sin(2 )cos

sin( ) 2cos( ) 0

( , ) cos( ) 2sin( ) 0

0 0 cos

sin
0 7 cos sin cos

sin

r r qj r qj qj

qj J qj qj J qj

v qj qj qj J qj qj J qj

qj

qj

r qj r qj qj

r

n C i t C i u t

u t u t

t u u t u t

u

u
C i t C i u t

i

 

 

 
 

        


   
      



   

 

Φ











 (15) 

where 
72

2 2
3

2

E

r

J R
C a



 ,
3r

r

n
a


  is the mean 

angular motion rate, and 
2

25
2 sin

2
J rC i

 
  

 
 is 

the drift rate of perigee. 0 0q qf q qt t t dur     is or-

bital transfer time, qj qf qjt t t   , qju  is the argu-

ment of latitude of the thj  maneuver, and 

 , ,
T

qj qjx qjy qjzv v v    v  is the impulse vector. The 

orbital coordinate system used to describe the im-

pulse is given as follows: x  is along the orbital ra-

dial direction, y  is along the in-track direction, and 

z  is along the orbital normal direction and com-

pletes the rand-handed system. The last maneuver is 

executed at qft , i.e. 2qf qt t . 

Eq. (13) is a linear relative dynamic equation 

under the 2J  perturbation. In this study, only two 

maneuvers are considered for each orbital transfer 

that six unknown impulse components correspond to 

six equations, and then the solution to Eq. (13) can 

be easily obtained using Gaussian elimination. The 

details of this linear dynamics model can be found in 

the references [10] and [9].  

Long-duration rendezvous problems under the J2 

perturbation have multiple local minima both in the 

duration of one orbital period and in the duration of 

multiple orbital periods [9]. In order to overcome the 

property of multiple local minima in one orbital pe-

riod, the burn time of the first maneuver 1qt  is enu-

merated from 0qt  to 0q rt T  with a step of 

/r enumT N , where rT  is the reference orbital period 

and enumN  is the number of enumerations. For each 

value of 1qt , a group of values for 1qv  and 2qv  

can be obtained, and is referred to as 1 1( )q qtv  and 

2 1( )q qtv . The 1enumN   groups of 1 1( )q qtv  and 

2 1( )q qtv  in total are calculated and then are com-

pared with each other to find the group with the local 

minimum value of 
1 1 2 1( ) ( )q q q qt t  v v , and the 

values of the 1qv  and 2qv  in this group are used 

as the impulses for the orbital transfer of the qth ren-

dezvous.  

Based on the model provided above, the ma-

neuver impulses of each rendezvous orbital transfer 

are only functions of the initial state, the required 

ending state and the orbital transfer time, and then the 

propellant cost can be evaluated with small computa-

tion cost. 

C. Optimization Algorithm 

A hybrid-encoding genetic algorithm (HEGA) is 

adopted to solve the formulated approximated 

sub-problem. This algorithm is a combination of an 

integer-coded GA for classical TSPs [11] and the re-

al-coded genetic algorithm [12]. 

The design variable vector 1 2( , )Y Y Y  is used 

directly as the chromosome of an individual. The fit-

ness assignment process for a single-objective prob-

lem is straightforward. The arithmetical crossover 

and non-uniform mutation operators are applied to 

2Y  [12], while the ordered crossover (OX) and 

three-point displacement mutation operators are both 

applied to 1Y  [11]. An elitist strategy is employed 

alongside tournament selection during the algorithm’s 

selection phase. This can help prevent the loss of 

good solutions once they have been found [12]. 
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VI. Single Rendezvous Trajectory 

Optimization 

Once the rendezvous sequence for each mission 

is determined using the methods given in Secs. IV 

and V, an optimization model is required for mini-

mizing the V  cost for every single rendezvous 

between two debris. The orbital transfer from debris 

to debris is a multi-impulse, perturbed rendezvous 

problem under the dynamics of Eq. (2). Orbital tar-

geting algorithms based on two-body dynamics, such 

as the relative-orbit-element based relative motion 

equations and the Lambert algorithm, cannot directly 

obtain a feasible solution unless some differential 

corrections or simple iterations are employed. In or-

der to efficiently find a near-optimal solution for the 

given long-duration (up to 30 days) rendezvous prob-

lem, a feasible iteration optimization model is used, 

in which the homotopic perturbed Lambert algorithm 

[5, 14] is employed as orbital targeting algorithm. 

The optimization model is given in this section.  

A. Design variables 

There are 4n design variables for an n-impulse 

maneuver plan: 

[ , , , ], 1,2,..  .  ,i ix iy izt v v v i K    D  (16) 

where K is the maneuver number of times, it  is the 

ith maneuver time, and [ , , ]T

i ix iy izv v v    v  is the 

ith maneuver impulse vector. In our results, 4-impulse 

maneuver plan is adopted, i.e. K = 4.  

B. Objective function 

The objective is to minimize the total velocity 

increment: 

1

min
K

i

i

 J v


  = v    (17) 

C. Constraints 

The duration between two adjacent maneuvers 

should be larger than a given value, i.e., 

1

0

,

  [ , ], 1,2,.   ..,

i i i

i f

t t T

t t t i K

  


 
  (18) 

where 0 0t  , 30ft   days, 1 5T   days, iT  

can be set as zeros for 2,...,i K . In addition, at the 

final time, the deviation between the spacecraft’s state 

vector [ , ]T

f f fx r v  and the state vector nextx  of 

the next debris should be smaller than the given tol-

erant error, i.e.,   

next next  100 m 1 m/sf f   r r v v，  (19) 

D. Feasible Iteration Optimization Ap-

proach 

To deal with the linear inequality constraints 

presented in Eq. (18), a group of proportionality co-

efficients 1, , [0,1]n    is used to substitute the 

maneuver times 1, , nt t  as optimization variables. 

Then, the maneuver times can be calculated as 

1 1

1

( )+ , where

5 days,

0 2,...,

i i i f i i

i

t t t t T

T

T i K

    

 

   , 

  (20) 

To deal with the nonlinear inequality constraints 

presented in Eq. (24), the last two impulses 1nv  

and nv  are chosen to satisfy the nonlinear inequal-

ity constraints, and that they are obtained by solving a 

perturbed two-point boundary value problem. Here 

the homotopic perturbed Lambert algorithm proposed 

by Yang et al. [5,14] is employed to compute these 

two impulses as described by:  

 1 1 1( , ) ( ), ( ),_K K K K K KLambert p t t t t     v v x x  

(21) 

where next( )Kt x x , and the position and velocity 

error tolerances for the perturbed Lambert algorithm 

are respectively set as 100 m and 1 m/s. This per-

turbed Lambert algorithm allowed the perturbed solu-

tions that included the successful computation of the 

J2-perturbation through a homotopic targeting tech-

nique in which the two-body Lambert solution was 

used as an initial value and the Runge-Kutta integra-

tion of Eq. (2) was used as a perturbed trajectory 

propagator.  

Overall, the optimization model for a multi-

ple-impulse rendezvous problem can be rewritten as 

follows based on the feasible iteration approach: 

 

 

1

next next

1 1 2

1 1

1 1 1

  

min ,   subject to

100 m 1 m/s,  where

, , , , ,

[0,1], ( )+ 1,...,

( , ) ( ), ( )_ ,

n

i

i

f f

K K

i i i i f i i

K K K K K K

J

t t t t T i K

Lambert p t t t t

 

 





 

  

 

   

   


     

   


X

v

r r v v

X v v

v v x x

，

，

，

 (22) 

Although the optimization problem presented in 

Eq. (28) is formulated as an unconstrained problem, it 

is very difficult to solve directly with a gradi-

ent-based method such as SQP algorithm because 

these algorithms are very sensitive to the initial guess. 

Moreover, the long duration and probably large 

non-coplanar difference of RAAN make it very diffi-

cult to obtain the optimal solution for the rendezvous 

problem. Therefore, it is highly desirable and neces-

sary to employ a global optimization algorithms that 

do not require any gradient information or initial 

guess to solve the problem. We use a differential 

evolution (DE) algorithm [16] to solve the optimiza-

tion model of Eq. (22).  

VII. Simulation Results 
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The start and end epoch as well as the debris 

removal sequence for each mission are listed in Table 

1. It can be found that all the 123 debris are removed 

in 12 missions. The numbers of debris removed in 

each mission are mainly between seven and twelve 

except for 17 of the first mission. 

 

Table 1  Events epochs and debris removal sequences 

Mission 

Order 

Start Epoch 

(MJD) 

End Epoch 

(MJD) 

Debris 

Number 
Debris Removal Sequence 

Start Mass 

(kg) 

1 23517.00 23811.52 17 
0, 115, 12, 67, 19, 48, 122, 7, 63, 61, 82, 107, 41, 11, 45, 

85, 47 
5478.12 

2 23893.80 24092.29 11 58, 28, 90, 51, 72, 69, 10, 66, 73, 64, 52 4106.88 

3 24122.30 24427.74 12 84, 86, 103, 16, 121, 92, 49, 23, 20, 54, 27, 36 3809.97 

4 24461.50 24660.15 10 8, 43, 9, 55, 95, 14, 102, 39, 113, 110 4081.09 

5 24785.00 24975.41 12 83, 75, 22, 35, 119, 24, 108, 37, 112, 104, 32, 114 5782.68 

6 25006.00 25198.32 9 118, 65, 74, 50, 94, 21, 97, 79, 120 4024.43 

7 25281.60 25454.87 10 62, 1, 40, 76, 89, 99, 15, 59, 98, 116 4877.61 

8 25555.40 25669.64 8 117, 91, 93, 70, 18, 105, 88, 46 4909.98 

9 25702.40 25860.22 9 5, 53, 33, 68, 71, 80, 57, 60, 106 4419.99 

10 25912.74 26055.85 8 2, 81, 96, 6, 100, 30, 34, 26 3902.24 

11 26087.53 26262.18 10 87, 29, 101, 31, 38, 25, 4, 77, 13, 3 4267.35 

12 26292.26 26381.58 7 44, 111, 56, 78, 17, 109, 42 3584.37 

 

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

mission orber


 V

 (
m

/s
)

 
Figure 1  Total V  of each mission 
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Figure 2  Average V  of each mission 
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Figure 3  Minimum and maximum V  of each mission 
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Figure 4  History of the RAAN of the active spacecraft and 

corresponding debris for mission #12 

 

The total velocity increments for rendezvous of 

each mission are presented in Fig. 1. As is shown, the 

total velocity increments of most missions are be-

tween 1500 m/s and 2500 m/s while only that of the 

fifth mission is beyond 3000 m/s. However, it should 

be noticed that the first mission has also removed the 

most debris. The average velocity increments of each 

mission are better indices to evaluate the performance 

of each mission. As is shown in Fig. 2, the average 

velocity increments of the first four missions are be-

low 250 m/s, while for most of other missions the 

average velocity increments are near 300 m/s, which 

indicates that the performances of the first four mis-

sions are better than others. It is clear that the average 
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velocity increment of the eighth mission is the largest 

with a number of near 400 m/s, which indicates that 

the mission is not optimal. The minimum and maxi-

mum velocity increments of each mission are illus-

trated in Fig. 3. According to Fig. 3, the smallest ve-

locity increment of all 12 missions is 38.6 m/s while 

the largest one is 798.3 m/s. It can be indicated that 

the range of velocity increments for a single rendez-

vous process of each mission is very wide. 

The histories of the RAAN of the active space-

craft and corresponding debris removed in the last 

mission are shown in Fig. 4, where the red line with 

circles indicated the history of RAAN of the space-

craft. It can be found that the RAAN of the spacecraft 

increases gradually as it rendezvouses the debris one 

by one. The RAAN of debris 42, as shown in the Fig. 

4, is not close to other debris in this sequence, but 

there is an intersection between it and that of debris 

109 at the MJD around 26377. Consequently, it is 

clear that the spacecraft waits to that epoch to ren-

dezvous with debris 42 from debris 109 so as to re-

duce the velocity increments for maneuvers caused 

by a large initial RAAN error.  

V. Conclusions 

A three-level optimization framework is pre-

sented to solve the problem of GTOC9, wherein the 

competitors are called to design a series of missions 

able to remove a set of 123 orbiting debris pieces 

while minimizing the overall cumulative cost. The 

top level is similar to a dynamic TSP, wherein the 

debris pieces are divided into several groups and each 

group of debris is removed by one mission. The mid-

dle level is a mixed-integer optimization problem, 

wherein the impulses and durations of each rendez-

vous in one mission are designed. And the bottom 

level is the precise and detailed optimization of the 

flight trajectory in one rendezvous. The result of 

GTOC9 obtained by this framework is then illustrated. 

The result indicates that the three-level optimization 

framework is efficient and can obtain good solutions 

in considerable time.   
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