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Abstract

The design and planning of space trajecto-
ries is a challenging problem in mission anal-
ysis. In the last years global optimisation
techniques have proven to be a valuable tool
for automating the design process that other-
wise would mostly rely on engineers experi-
ence. The paper presents the optimisation ap-
proach and problem formulation proposed by
the team Strathclyde++ to address the prob-
lem of the 9" edition of the Global Trajectory
Optimisation Competition. While the solution
approach is introduced for the design of a set
of multiple debris removal missions, the solu-
tion idea can be generalised to a wider set of
trajectory design problems that have a similar
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structure.

1 Introduction

The Global Trajectory Optimisation Com-
petition (GTOC) [4] is a yearly worldwide
challenge that was initiated by the European
Space Agency in 2005 with the aim of ad-
vancing the field of research on global opti-
misation techniques for space mission design.
During the years the challenge has been the
breeding ground for the testing and develop-
ment of new computational intelligence tech-
niques for the design of a variety of trajectory
design problems. This year challenge, The
Kessler run [5], has been to design a set of
missions to deorbit 123 debris on Low Earth
Orbit (LEO). The only manoeuvres allowed to
control the spacecraft trajectory are instanta-



Team N, Ng score

JPL 10 123 731.2756
NUDT Team 12 123 786.2145
XSCC-ADL 12 123 821.3796
Tsinghua-LAD 12 123 829.5798
NPU 13 123 878.9982
Strathclyde++ 14 123 918.9808

Table 1: Final rank GTOC9

neous changes of the spacecraft velocity and
the problem objective function .J is the sum of
a linear term, the launch cost, that increases
linearly with submission time, and a quadratic
cost that is the sum of propellant mass and de-
orbiting kits. Moreover constraints on propel-
lant mass, minimum pericentre, time between
rendezvous and between launches have to be
considered in the problem formulation.

The paper presents the optimisation tech-
niques and the solution approach adopted by
the team Strathclyde++ that ranked 6 over
the 69 teams that registered to the competition
(see Table 1). The second Section is dedicated
to present an overview on the overall problem
solving methodology designed for the prob-
lem, Section 3 presents the different fidelity
dynamical models used for the combinatorial
search (Section 4) and final solution optimi-
sation/local refinement (Section 6). Section 5
presents an evolutionary approach adopted to
recombine and improve solutions and Section
7 and 8 presents results and conclusions.

2 Solution approach

The solution to the problem was found by
using a three-step process that included both
low fidelity and high fidelity models, as well
as global and local optimisation solvers to
converge to an optimal and feasible solution.
As a first step, a Beam Search algorithm and a

sequence patching method have been used to
generate initial guesses for multi-launch de-
bris removal campaigns, considering the de-
bris sequences and the initial guesses for the
departure time from each debris. The combi-
natorial algorithms used a low fidelity model
to calculate the required AV for each transfer
and estimate the final mission cost. A set of
these solutions have been used as initial pop-
ulation for an evolutionary optimisation ap-
proach that, by optimising the times of trans-
fers, was able to modify the order of the de-
bris in the sequences themselves as well as to
improve the distribution of initial mass among
the launches. After the generation of these ini-
tial campaigns, a second step was used to pro-
cess the output of the combinatorial search. In
this step, for each debris to debris transfer, the
time of application of each impulse as well as
the magnitude and direction of each of them
has been optimised by means of a global and
local optimisation algorithms using low and
high fidelity models. The bounds on departure
time from each debris and AV components
have been set from the values returned by the
combinatorial search. By imposing mission’s
time, position and mass constraints, these new
sequences formed the overall campaign.
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Figure 1: Flowchart of the solution approach.

As a third step, the entire launch sequence
has been optimised locally with the high fi-
delity dynamical model to exploit the correla-



tion between subsequent transfers and reduce
the propellant consumption further while en-
suring that the constraint tolerances were met.

A flowchart of the solution approach is
shown in Figure 1. In the following sections,
the various components of this approach are
described in detail.

3 Impulsive models

Low Fidelity estimation

In order to have a good but fast approxi-
mation of the cost of a transfer between pairs
of debris, a low fidelity model, neglecting the
Jo perturbation, was used. For the sake of
simplicity, the transfer was divided into two
parts: an in-plane part, modifying only the
shape of the orbit and an out-of-plane part,
changing only the direction of the angular mo-
mentum. The phasing was not included as it
comes with no extra cost under Keplerian dy-
namics assuming there is no time constraint
on the rendezvous. Given the low eccentric-
ity of all the debris, the departure and target
orbits were approximated to be circular. Thus
the cost of the in-plane part can be obtained
from a classic Hohmann transfer. As for the
change of plane, this was computed as a sin-
gle manoeuvre modifying both the inclination
and the right ascension of the ascending node
at the same time [8]. Since its cost is propor-
tional to the orbital velocity, this manoeuvre
comes first if the departure orbit is at higher
altitude than the target, second otherwise.

High Fidelity computation

A high fidelity estimation of the cost of the
transfer between pairs of debris was obtained
by solving a constrained global optimisation
problem using the evolutionary algorithm MP-
AIDEA [2]. In order to reduce the number of
variables and, therefore, facilitate convergence

to the global optimum, the maximum num-
ber of allowed manoeuvres was set to nay =
5. The vector y of optimisation variables in-
cludes the time of applications of each impul-
sive manoeuvre and the three components of
the AV vector, for a total of n = 4nay = 20
variables. The constrained optimisation prob-
lem has been formulated as:

nAv
Lin Fy) = ; AVi(y)
s.t. x=1f(x)
az(l—el)26600km izl,...,nAV
x(tr) = xp(ty)
(1)

where y is the vector encoding the 20 optimi-
sation variables, x is the state vector of the
spacecraft, xp is the state vector of the tar-
geted debris and ¢ is the time at the end of
the transfer. MP-AIDEA is run for a total
of 1e6 function evaluations for each transfer.
For the first 7e5 function evaluations a non-
expensive dynamical model is used, in which
it is assumed that the spacecraft’s mean orbital
elements a, e and ¢ remain constant between
two impulses, {2 and w change according to
their secular variations due to Js [8], while M
changes according to M = My + 7 (t — tg)
where 7 is the mean motion perturbed by J,
[10]:

2
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Ry, is the Earth’s radius and p = a(1—e?). The
best solutions obtained at the end of this stage
are then used to initialise the population for the
next phase of the optimisation process, where
the complete high fidelity dynamics, includ-
ing osculating .J, effects, was considered. In



this phase dynamic equations were integrated
with an 8-th order Adam-Bashforth-Moulton
algorithm with a fixed step-size. At the end of
the global optimisation, a local search was run
from the best solution obtained: the Matlab
solver fmincon with active-set algorithm was
applied to problem 1.

4 Combinatorial search

Full campaign

At this stage, a solution is considered to be a
list of couples {(D,,t;)} defining the itinerary
in terms of debris to visit and time of trans-
fer, and with a predicted cost .J. By consider-
ing a new launch as a particular case of trans-
fer, a full first-guess launch campaign can be
built incrementally in a tree-like fashion. The
base tree exploration heuristic of choice was
the Beam Search, this is a Breadth-First Tree
Search including two stages of pruning: at
the parent level up to a branching factor Br
—branching phase—, and at the generation level
up to a beaming factor Be— beaming phase.
This method has been successfully applied in
other GTOCs [3] and was selected primarily
due to the fact that upper bounds on its time
and space complexity are easily obtained.

The algorithm operated on a memory-
loaded time-discretised precomputation of the
AV cost of all debris-to-debris transfers as
predicted by the Low-Fidelity Model in Sec-
tion 3. With this modelling, analysis pointed
towards the underestimation in time of flight
as an important source of error due to the .J,
drift. For seamless interaction with the sub-
sequent of the solution pipeline, a zero-order
approximation of the time of flight was used
as correction in the precomputation of AV,
together with margins on the prediction and
over-constrained transfer windows.

Upon this baseline, a family of problem-
specific techniques was conceived. These can
be classified in two conceptual variations:

— Cyclic Beam Search: takes one or more
roots Sy consisting in an initial debris-time
couple (Dy,to) and a set of available debris
and available mission time intervals. At itera-
tion 7, a move of depth 1 is appended to node
S; to generate next-level nodes S; 1. This con-
sists in expanding the launch campaign with
either a transfer or a new launch to the cou-
ple (D1, t;), with D; non-visited and t; sat-
isfying the respective transfer or launch con-
straints imposed by the sequence associated to
S;. Note the latter do not exclude a poten-
tial launch at ¢; < t, provided that ¢; belongs
to the available mission time intervals. Addi-
tional restrictions are imposed on the launch
heuristics to render the execution practical.

— Concurrent Beam Search: a meta-
algorithm on the method above, consists in a
scheduler that manages the branching phase
of N Cyclic Beam Searches sharing the non-
visited debris and available mission times in
a competitive fashion, and allowing at each
meta-iteration N; < N of them to advance of
an iteration as defined above.

Note these methods can be applied to either
the computation of single mission itineraries
or complete campaigns, as well as to the ex-
pansion of sub-campaign itineraries. Over
95% of the solutions eventually refined and/or
evolved were generated with the Cyclic Beam
Search.

Additional heuristics. In the Kessler run
problem, a competent solution needs to visit
all the debris available. This fact poses an
issue for incremental approaches such as the
ones described hereby; different launch mis-
sions will be in competition for a fraction
of the reachable targets, hence greedy ap-



proaches risk to exhaust the search space in
early iterations, leading to unexpensive mis-
sions that cannot be aggregated into compe-
tent campaigns. This effect was mitigated us-
ing heuristics that enforce variety amongst the
subcampaigns represented by the parent nodes
of an iteration of the search, namely:

— Pruning of twin transfers: a limited num-
ber of transfers n; to the same debris is ap-
pended to node S; during its branching. A
minimum time separation At; is enforced be-
tween each of them.

— Pruning of twin campaigns: a maximum
number of itineraries n, visiting the same sub-
set of debris is allowed during the beaming
phase. This parameter is self-adapted if the
generation is underpopulated.

— Modified cost functions: considering sev-
eral definitions of a per-debris rarity bonus or
rewarding homogeneous campaigns in terms
of AV budget per launch. Campaigns thus ob-
tained contained features that proved to be of
special interest for the seeding of the approach
presented in Section 5.

Initialisation. For the Cyclic Beam Search,
the properties of the search space and algo-
rithm allowed for a brute-force initialisation
approach; light searches in terms of computa-
tional resources were initialized from each of
the initial debris at a monthly discretization of
the available mission timespan. As data was
gathered, progressively heavier searches were
conducted, giving priority to the most promis-
ing ty values in the database while letting the
algorithm itself select amongst all initial de-
bris.

For the concurrent beam search, even for
moderate values of N, naive initialization of
all sub-searches from all debris results im-
practical. To overcome this limitation, a
multi-variate time-series clustering was con-

ducted in the features z; = cos(€;(t)), y; =
sin(€2;(t)), where €;(t) is the RAAN of
debris j at time ¢, and pre-pruning con-
ducted in terms of size of the cluster. The
clustering algorithm of choice was Partition
Around Medioids, using segments of 75 days,
Euclidean and Penrose distances and num-
ber of clusters selected by means of Silhou-
ette Width in each segment. Yet other op-
tions tested for the Concurrent Beam Search
are its initialisation by means of N non-
intersecting itineraries corresponding to in-
dependent launches, or solution of a single-
objective optimization problem for the desig-
nation of N launch sites in terms of RAAN
and time of launch, maximising the total num-
ber of reachable debris.

Sequence patching

The goal of a sequence patching is to as-
semble a launch campaign out of feasible
sequences built from cheap debris to debris
transfers. Figure 2 suggestes that such trans-
fers are common within certain time windows.
All possible transfers with AV below a prede-
fined threshold were precomputed and used to
generate sequences. A sequence is described
by time windows within its transfer occur and
debris intended for removal. The order in
which debris are visited is not relevant for
the patching algorithm and can be established
later using a cost optimizer.

Building a launch campaign is equivalent
to finding a clique in an unidirectional graph
G(V, E) where V is the set of sequences and
E the set of edges. Two sequences are con-
nected by an edge if they target distinct sub-
sets of debris and do not overlap in time.
Finding a maximum clique is a well known
NP-hard problem [1] with efficient solvers
available open source [9]. With this ap-
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Figure 2: Velocity required to reach a destina-
tion debris at a point in time.

proach partial campaigns for data sets con-
taining 8.5 x 10° sequences have been found.
However this approach became impractical for
larger datasets where a depth-first search was
used instead. To accelerate the patching algo-
rithm sequences were sorted according to an
index function that took into account a rela-
tive cost of a debris’ removal and its frequency
among all sequences. Furthermore, the depth-
first search was started from sequences that re-
move the rarest debris first to significantly re-
duce the number of sequences that later can
be added to a campaign. The results obtained
from sequence patching algorithm heavily de-
pend on the quality of the initial data set. Fi-
nal campaigns obtained from patching a data
set containing 2.2 x 10° elements covered up
to 116 debris without launches dedicated for
one debris removal.

5 Evolution of solutions

As an attempt to further improve the solu-
tions obtained by the combinatorial searches,

the problem was reformulated as

L J),  t=(t1,..,tj, .., t123)
S.t.
5<tg41—t,; <30  Vs; € M;,VM;
toy i1 — tsona; = 43 VM,

(2)

where J* is the bi-objective function that has
as first objective the original objective func-
tion and as second objective the mass viola-
tion; M; is the ¢—th mission and ts, 1s the time
of transfer from debris s;. With this encoding,
to each debris was associated a time between
the minimum and maximum epoch allowed
for the mission (L; and Uy). This vector of
times was then sorted in ascending order, and
the resulting sort index vector was saved to al-
low reverting to the original order
toort = (tsyyonts;y oo borng)s bey < toq1

Once the times were sorted, missions M,
emerged from the differences between con-
secutive times: sequences of debris separated
each by less than 30 days defined a mission,
and the union of missions defined a full cam-

paign.

M; = {ts,|ts,,, —ts, < 30for s, € toore}

At this point, the order of debris visited
couldn’t change, and the time values could be
interpreted as the departure time for each de-
bris, or as the launch time if a mission was
composed by only one debris. Time differ-
ences were then imposed to be between 5 and
30 days between each subsequent debris of a
mission, and of at least 43 days between the
final time of a mission and the start time of
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Figure 3: Scheme of the time processing in the
evolutionary scheme

the next, which includes 3 days of safety mar-
gin as the transfers were considered instanta-
neous at this level but not with the full dynam-
ics employed in the refinement stage. Once
these time constraints were enforced, the re-
sulting AV of each debris to debris transfer
were computed with the low fidelity estima-
tion, resulting in the propellant and launch
mass of each mission and ultimately of the
whole campaign. Problem 2 was tackled with
the MACS algorithm [7] with a bi-level ap-
proach: on the upper level, the evolutionary
heuristics of MACS generated possible solu-
tions t, which were sorted and made feasi-
ble by a lower level simply enforcing the con-
straints and returning to the outer level feasible
solutions with the original ordering. MACS
was seeded with the best 14 solutions com-
ing from the combinatorial search, and was
run for 1e7 function evaluations and standard
parameters, with a gradient based refinement
performed only on the lower level every 100
iterations.

6 Solution refinement

As last step, the solutions of the single
transfers between debris computed by the high
fidelity model presented in Section 3 are re-

fined by a local optimiser handling an entire
mission of multiple transfers in order to meet
the constraint tolerances and further reduce the
propellant consumption. Two steps are em-
ployed for this process. In the first one the
mission is optimised using a single-shooting
method. For each transfer, the optimisation
variables are the same ones defined in Sec-
tion 3, but the total number of variables is now
n = 4 N nay where N is the number of trans-
fers in the mission. The problem is solved
using Matlab fmincon with the active-set al-
gorithm. In the second step, the solution ob-
tained by the single-shooting is used as first-
guess for a direct multiple-shooting algorithm,
using WORHP as sparse nonlinear program-
ming (NLP) solver [11], employed to reduce
the numerical integration error and improve
the convergence performance.

The constrained optimisation problem has
been formulated as already outlined in Equa-
tion 1, but the number of variables to opti-
mise for a single transfer is increased to n =
dnay+6(nay—1)(m—1)+3(nay —2), where
m is the number of discretization intervals be-
tween two impulses. In order to enhance the
computational efficiency, the sparsity patterns
of the associated Jacobian and Hessian matri-
ces, resulting from the multiple-shooting tran-
scription scheme, have been derived and ex-
ploited in the NLP step. Furthermore, the full-
Jo dynamical model has been augmented with
the associated variational dynamics, and the
system of equations numerically propagated
using a Runge-Kutta 4 integrator, to compute
the gradient information. This approach re-
sulted in a decreased computational load and
a more accurate derivative computation with
respect to the finite-difference approach [6].



7 Results

Table 2 details the number of launches and
cost of several of the submissions ordered by
submission date, together with the associated
relevant improvements on the solution pro-
cess. For fairness in the comparison, the cost
is computed as if they had all been submitted
at the time of the last submission.

Figure 4 details the mission timeline for the
solutions in Table 2 as well as the initial mass
of the spacecraft in each of the launches. It
can be observed how an increase in the quality
of the solution is associated to an increase in
homogeneity in the mass of each of the inde-
pendent launches. This relates to the fact that,
since all the debris need to be visited for a so-
lution to be competent, any two launches can
be in competition for a subset of the targets.
Hence greedy approaches in terms of AV of
each transfer will be ill-suited for the resolu-
tion of this problem, as they will often lead
to unexpensive missions that cannot be aggre-
gated into competent campaigns. Following
this line of reasoning, note also how the bottle-
neck derived from the utilisation of an incre-
mental combinatorial approach is here mani-
fest, as can be induced from the gaps in the
timelines of solutions 1 to 4. These are caused
by the search exhausting the available debris
before exhausting the available mission time,
thus failing to explore a region of the search
space. Whereas solutions were generated us-
ing some of the heuristics detailed in Section
4 that mitigated this effect, this was always
at the expense of the final objective function
value. A similar phenomenon was encoun-
tered regarding the number of launches — solu-
tions of as few as 13 launches yet suboptimal
to solution 4 were generated before solution
5. This tendency ends with the introduction

of the evolution of solutions in the pipeline,
in solutions 5 to 7. Besides a reduced num-
ber of launches and the lack of the aforemen-
tioned gaps in the mission timeline, these cam-
paigns also show an increased homogeneity in
terms of initial mass of each of the launches.
It is hence interesting to remark the outstand-
ing synergy obtained between the first and sec-
ond stages of the solution process described
in Section 1. Figure 5 shows the difference
in time of arrival at debris between the 14
individuals used by MACS as initial popula-
tion, and the final solution submitted, solution
7. Note that these times will alone define the
sequence of a campaign, hence these differ-
ences can be taken as an indicator of the sim-
ilarity of the chromosomes of different cam-
paigns. It can be observed that mainly two
similar first-guess itineraries serve as baseline
for the evolution of the final submission. The
algorithm manages nevertheless to take fea-
tures from other solutions in order to enhance
the quality of the population; whereas an ap-
proximate exchange with another solution can
be detected in some cases, the mechanics of
the evolution is more concealed in others as
for example debris 97. Figure 6 is a represen-
tation of the evolution in time of the RAAN
of the final submitted campaign. It can be ob-
served that the solution generally follows the
natural J, drift as expected.

8 Conclusions

The paper presents the approach developed
by team Strathclyde++ for the solution of the
9" GTOC problem. The proposed method-
ology separates the combinatorial component
of finding the optimal sequence of debris re-
movals within the mission timeline, from the
continuous problem of finding the best set
of manoeuvres for each transfer. In particu-



Solution ID  N. Launches J Relevant improvements in solution process
1 26 1713.07 Beam Search in the first 100 mission days.
No thorough trajectory refinement.
2 18 1133.94 Cyclic Beam Search.
Improved high-fidelity model.
Added single and multiple-shooting refinement.
3 16 1059.54 Improved Cyclic Beam Search heuristics.
Improved low-fidelity model.
Improved global optimisation on high-fidelity model.
4 16 1028.72  Further relaxation of search overconstraints.
5 14 967.49  Added evolution algorithm to solution process,
Small population of best submitted solutions.
6 14 945.15  Multi-objective formulation of evolution
7 14 918.98  Larger population including diverse features.

Table 2: Evolution of the solution process and quality of some of the submissions. Column
J computed with Cy = 54.945 as if submitted at the time of submission of solution 7 (best
submitted).
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Figure 4: Launches and debris removal epochs of the solutions in Table 2. Colour relates to

initial mass of each of the launches.

lar, it introduces a continuous formulation of
the combinatorial problem that solved by a
population-based global algorithm was able to
evolve a set of first-guess solutions and gener-
ate new ones by means of recombination and
hybridisation of the initial individuals, thus
overcoming the manifest limitations of incre-
mental combinatorial approaches. The funda-
mentals of the proposed methodology can be
generalised to a family of multiple rendezvous
problems, and are of special interest for the de-

sign of missions in which the set of available
targets needs to be exhausted.
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