GTOC9: Results from the University of Colorado at Boulder

Nathan L. Parrish, Daniel J. Scheeres, Simon Tardivel, Chandrakanth Venigalla, Jonathan Aziz, Marielle Pellegrino, Oscar Fuentes, Stijn De Smet

Problem Statement

- Deorbit 123 pieces of debris in ~sun-synchronous orbit at ~7000 km altitude for the minimum cost
 - J2 dynamics
 - Impulsive maneuvers
 - Time constraints
 - Mass constraints
- Cost function:

$$J = \sum_{i=1}^n C_i = \sum_{i=1}^n \left[c_i + lpha (m_{0_i} - m_{dry})^2
ight]$$

Understanding the problem

- How often does each debris cross the others' RAAN?
- Fastest: every ~1 year
- Most: well beyond the 8 year time limit
- Most debris-to-debris transfers only exist (cheaply) once or twice in the entire competition window
- Debris transfer options are largely driven by RAAN drift

Understanding the problem

Debris ID # (sorted by inclination)

- With fixed RAAN, problem becomes standard TSP (Traveling Salesman Problem)
- Optima ΔV is ~3500 m/s
- Need absolute minimum of 2 launches to achieve
- To fly this solution would take millions of years to wait for RAAN phasing

Solution outline

- 1. Analytical ΔV estimate
- 2. "Building Blocks": find all the low- ΔV chains of debris, and pick a set of chains that visit most of the debris
- 3. "Stitcher": add a few debris (usually high- ΔV) on to the starting chains
- "Finisher": add 2-3 more launches which each visit 2-3 debris at very high cost (but cheaper than single launches)
- 5. "Wiggler": slightly adjust the dates of each launch to reduce the ΔV
- Integrated Solution: shooting algorithm with random restart to optimize the numerically-integrated solution and satisfy final constraints

Analytical ΔV

- •Given: transfer time, Ω_1 , Ω_2 , $\dot{\Omega}_1 \rightarrow \Delta \dot{\Omega}$
- Assume:
 - Circular orbits
 - Small changes in i, α
- Change in node rate due to change in i:

$$\Delta_i \dot{\Omega} = \frac{\partial \dot{\Omega}}{\partial i} \Delta i = -\dot{\Omega} \tan i \, \Delta i$$

Change in node rate due to change in a:

$$\Delta_{a}\dot{\Omega} = \frac{\partial\dot{\Omega}}{\partial a}\Delta a = -\frac{7}{2}\dot{\Omega}\frac{\Delta a}{a}$$

•Change in i as a function of ΔV :

$$\Delta i = \sqrt{\alpha/\mu} \Delta V$$

•Change in a as a function of ΔV :

$$\Delta a = 2a\sqrt{a/\mu}\Delta V$$

Analytical ΔV

 $\bullet \Delta V$ required to change node rate, via changing i:

$$\Delta V_i = \Delta_i \dot{\Omega} \frac{2}{3J_2 R^2} \frac{a^3}{\cos i}$$

 $\bullet \Delta V$ required to change node rate, via changing a:

$$\Delta V_a = \Delta_a \dot{\Omega} \frac{2}{21J_2R^2} \frac{a^3}{\cos i}$$

- •Comparing efficiency, found they are equally efficient at $\tan i = -7$, or $i = 98.13^{\circ}$
 - Better to use a to change node rate when $i_1 > 98.13^\circ$
 - Better to use i to change node rate when $i_1 < 98.13^\circ$
 - Also must consider i₂, a₂
- •Accurate enough when $\Delta V < \sim 300 \, m/s$

Building Blocks

- •Find all the chains of debris with average ΔV <200 m/s per transfer
 - Brute force search
 - Assume fixed 20 days transfer time
 - Find all chains which visit 10 debris each, 9 debris each, 8 debris each...
 - Yields ~100,000 possible chains
- Choose a set of chains that visit most of the debris
 - Sort the chains by the "common-ness" of the debris each visits
 - Prioritize the chains that remove the least common debris –
 which are the hardest to access
- Result from this stage: ~75-95 debris removed out of 123

Building Blocks

75-95 debris removed

Stitcher

- For the remaining debris, want to "stitch" them onto the existing chains
- Which debris to stitch where?
 - Have ~20 debris to stitch to ~12 existing chains
 - New debris rendezvous can be added anywhere in existing chains
 - Reduced problem from the original, but still too big to search with brute force
- Hard to know a priori which addition will be most productive
- Our solution: Greedy tree search with randomization, run many times in parallel
- Result from this stage: ~115-120 debris removed out of 123

Stitcher

115-120 debris removed

Finisher

- After stitching, there are still some debris that could not be attached to any existing mission
- •The remaining debris would cost 55.0018 MEU each with single launches
- •Even a launch with high ΔV that visits just 2 debris is better than single launches
- The "finisher" adds new missions that each visit 2-3 debris
- Problem is small now, so a complete brute force search is effective

Finisher

removed

debris

Wiggler

- Within each mission, the dates of rendezvous with each debris were slightly adjusted
- Saved 5-10% ΔV
- Interior Point method used to minimize ΔV while enforcing time of flight constraints

Wiggler

Mission 1

Mission 1'

Mission 2

Mission 2'

• • •

ΔV reduced 5-10%

Optimize Integrated Solution

- Transition from approximate, analytical model to "high-fidelity" numerically integrated solution
 - 4 maneuvers
 - Optimization problem with 8 variables: t_{23} , t_{45} , $\Delta \vec{V}_2$, $\Delta \vec{V}_4$
 - ΔV_1 chosen deterministically to match Ω , u at t_2

Propagated with debris dynamics

Propagated with numerical integration

Final Solution

Final Solution

Conclusion

- Thank you to Dr. Dario Izzo for organizing
- Great learning opportunity for our team, mostly students

- We wish to thank the following for their help:
 - Prof. Natasha Bosanac (CU Boulder)
 - Dr. Jeffrey Parker (Advanced Space)
 - Prof. Christoffer Heckman (CU Boulder)
- This work was supported in part by a NASA Space Technology Research Fellowship