University of Strathclyde Engineering

Resources

approach

Combinatoria

Evolution of

Global

optimisation

Reculto

Future ideas

On the generation and evolution of multiple debris removal missions

Carlos Ortega Absil*, Lorenzo A. Ricciardi*, Marilena Di Carlo*, Cristian Greco[†], Romain Serra*, Mateusz Polnik*, Aram Vroom[†], Annalisa Riccardi*, Edmondo Minisci*, Massimiliano Vasile*

- * Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow (United Kingdom)
- † Delft Institute of Technology, Delft (The Netherlands)

June 6, 2017

The team

Team & Resources

Dr Annalisa Riccardi

Prof Mx Vasile

Dr. Romain Serra

Carlos Ortega Absil

Lorenzo Ricciardi

Marilena Di Carlo

Mateusz Polnik

Cristian Greco

Aram Vroom

ARCHIE-WeSt

Team & Resources

Solution approach

Combinatori

Evolution of

Global optimisation

refineme

Results

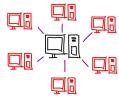
- Slack instant messages, creation of discussion channels (#combinatorial_optimisation, #impulsive_transfer, #the_bakery, ...)
- GitHub code developing
- Wikispace sharing of information (problem considerations, plots, tutorials on parallel computing)
- GDrive sharing of data (solution files, databases)

Computing resources

Team & Resources

Solution approach

Combinatoria


Evolution of

Global

optimisatioi

Result

- \bullet Archie-West: teaching cluster for the West of Scotland \sim 12400 core/hours used
- Torque resource manager: 11 heterogeneous commodity hardware $\sim 60~{\rm cores}$

Team & Resources

Solution

Dynamic models

Combinatoria search

Evolution of the solutions

Global optimisatio

Solution

Results

Table 1: Solution Rankings for the Kessler Run (GTOC9)

Rank	Team Name	Missions	Removed	J in MEUR
1	Jet Propulsion Laboratory	10	123	731.2756
2	NUDT Team	12	123	786.21452
3	XSCC-ADL	12	123	821.37966
4	Tsinghua-LAD	12	123	829.57987
5	NPU	13	123	878.99821
6	Strathclyde++	14	123	918.9808
7	DLR	14	123	949.85389
8	Missions Learners	14	123	964.51134
9	The Aerospace Corporation	14	123	1004.4860
10	Team Jena	15	123	1022.9063
11	UT Austin	15	122	1044.1787
12	NJU Team	16	123	1047.9685
13	EFLMAN TEAM	14	119	1107.6936
14	CU Boulder	17	123	1150.8439
15	CAS-NUAA	14	123	1182.0632
16	MTU-UoM	16	122	1192.7433
17	NSSC-THU	16	122	1210.3333
18	Brute WORHP	18	123	1229.5475
19	The Goonies	15	122	1238.6396
20	NablaZeroLabs	16	123	1267.7501
21	TYSE	16	123	1336.8590
22	TM	18	123	1490.9659
23	Occitania	22	120	1493.8567
24	ARGoPS	20	123	1512.6017
25	Personal team	23	123	1588.5770
26	GO to space	20	112	1819.1391
27	UofI and Goddard	23	123	1951.6797
28	LSPirates	20	105	2164.2321
29	Astro-ASAP-UC3M	13	85	3141.1951
30	Cal Poly SLO	39	84	4467.8746
31	Team STAR Lab	12	57	4481.7781
32	Nicolas RAVE	13	18	6453.0254
33	National University of Colombia	2	7	6511.5471
34	MeltedCode	1	5	6594.1105
35	AMSS_GTOC	1	4	6619.3569
36	Bremen optimizers	1	2	6760.20

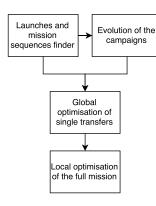
Team & Resources

Solution approach

Combinatoria

Evolution of

Global


optimisation

Results

Future ideas

Three-step process involving:

- Low & high fidelity models
- Global & local optimisers
- Beam search & sequence patching method
- ② Global evolutionary optimisation
- 3 Local optimisation

Dynamical models

Low-fidelity cost estimation of a transfer

University of Strathclyde Engineering

Team & Resources

approach

Dynamical

models

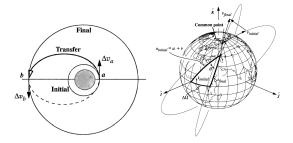
Combinatorial

Evolution of the solutions

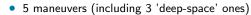
Global optimisation

Solution

Result


Future ideas

Assumptions:

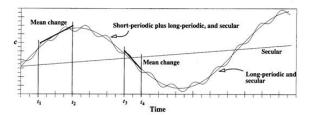

- Keplerian motion
- Circular orbits
- No phasing

Combination of two parts:

- Hohmann transfer (2 in-plane maneuvers)
- Change of orbital plane (i and Ω simultaneously)

The cheapest combination of the two is chosen as the predicted cost.

Incremental complexity of the model


1st model: J_2 secular perturbations only

- ΔV s applied on velocity obtained from osculating elements
- Propagation performed analytically with mean elements after conversion (same model as debris except for M)

$$\dot{M}=n\left[1+rac{3}{2}J_{2}\left(rac{R_{\oplus}}{p}
ight)^{2}\sqrt{1-\mathrm{e}^{2}}\left(1-rac{3}{2}\sin^{2}i
ight)
ight]$$

2nd model: J_2 complete model

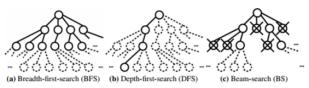
Numerical integration (predictor-corrector and Runge-Kutta)

Dynamical models

Combinatorial search

Incremental construction of launch campaigns

- Team & Resources
- approach
- Combinatorial


search Evolution of

Global optimisation

optimisation

Results

- Itinerary $\{(D_j, t_j)\}$
- At level *k*, extend with either:
 - transfer to new target in active mission
 - new launch in available mission time intervals
- Base algorithm: Beam Search
 - easy to control memory and runtime (Br, Be)
 - heuristics to avoid excess of permutations

- J estimated with low-fidelity ΔV model (precomputed).
- Various additional heuristics, corrections to the cost function, etc. gave solutions with different properties.

Combinatorial search

Incremental construction of launch campaigns

Resource

approach

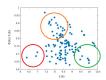
Combinatorial search

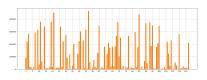
Evolution of

Global optimisation

Solution

Results


Future ideas


New launch heuristics:

- **Cyclic exploration** of mission timeline (>95% solutions).
- Other used: concurrent search, cheap transfer density, etc.

Naïve initialisation:

- Each search from all 123 debris.
- Total \sim 150 searches in a grid of launch times t_0 .
- Keep a database, give priority to promising t_0 values.
- Additional heuristics:
 - Maximise length of shorter mission (\rightarrow 13 launches!).
 - Per-debris rarity bonus, based on:
 - Cluster size first and second statistical moments.
 - Debris frequency in database of unexpensive missions.

Combinatorial search

Sequence patching

- Resource
- approac
- Combinatorial

search

the solutions

Global optimisation

Solution

Result

Future ideas

- Input Feasible sequences
- Output Launch campaign
- Algorithm
 Find a clique in the unidirected graph (N,A)
 - N sequences
 - A pairs of compatible sequences
- Extracted campaigns covering up to 116 debris from a database of 2.2 mln samples without single launches

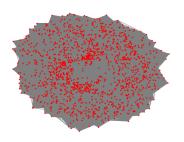


Figure: Partial graph of 1500 compatible sequences

Evolution of the solutions

The Time-shuffler encoding

Team & Resources

Dynami

Combinatoria search

Evolution of the solutions

Global optimisation

Solution

Results

Future ideas

ldea 1

- each debris associated to a (free) departure time
- times are then sorted in ascending order \rightarrow ID sequence
- $\Delta t \leq 30$ between sorted times define missions
- within each mission, $5 \le \Delta t \le 30$ is imposed
- between missions $\Delta t \geq 43$ is imposed (3 days safety margin, 10 days for removal of first and last)

t _{deb}	69.2	4.4	41.6	17	3.1
ID	1	2	3	4	5

t _{corr}	3.1	8.1	17	60	69.2
ID	5	2 M1	4	3 N	1

 The Time-shuffler encoding allows working only on continuous variables \rightarrow timings are treated explicitly, combinatorial problem is treated implicitly, gradient based refinement possible

 Debris sequence, visit times and mission lengths are optimised concurrently \rightarrow holistic global optimisation of the whole campaign (transfers evaluated with low fidelity model)

• To reduce number of missions, promising mass-unfeasible solutions should be retained \rightarrow multi-objective problem, with mass constraint violation as second objective

$$\min_{\mathbf{L_t} \leq \mathbf{t} \leq \mathbf{U_t}} \mathbf{J}^*(\mathbf{t}), \qquad \mathbf{t} = (t_1, ..., t_j, ..., t_{123})$$
s.t.
$$5 \leq t_{s_j+1} - t_{s_j} \leq 30 \qquad \forall s_j \in M_i, \forall M_i$$

$$t_{s_1, M_{i+1}} - t_{s_{\text{end}}, M_i} \geq 43 \quad \forall M_i$$

solved with MACS, initialised with solutions from Beam Search

Evolution of the solutions

Global optimisation

Minimisation of the cost of the debris-debris transfer

University of Strathclyde Engineering

Solution

approach

Combinatoria search

Evolution of the solutions

Global optimisation

Calada

Results

Future ideas

- Objective: $\min \sum_{i=1}^{5} \Delta V_i$
- Optimisation variables: times of application and magnitude and direction of impulsive $\Delta V \mathbf{s}$
- Population-based algorithm MP-AIDEA (Multi-Population Adaptive Inflationary Differential Evolution Algorithm): https://github.com/strath-ace/smart-o2c

1st GLOBAL OPTIMISATION

Model: J₂ secular perturbation

Solver: MP-AIDEA

2nd GLOBAL OPTIMISATION

Model: J_2 complete model

Solver: MP-AIDEA

LOCAL OPTIMISATION

Model: J₂ complete model

Solver: Matlab fmincon active-set

Solution refinement

Local optimization and tolerance matching

University of Strathclyde Engineering

Team & Resources

Solution approach

models

Combinatoria

Evolution of the solutions

Global optimisation

Solution refinement

_ ...

Direct multiple-shooting transcription scheme

- Initial guess: solution from local single-shooting
- J₂ complete dynamical model
- Runge-Kutta 4 integration scheme
- WORHP as NLP solver

Accuracy and computational efficiency enhancement

 Augmented variational dynamics to compute first and second-order derivative information

$$\tfrac{\partial G_x(t,x)}{\partial t} = \tfrac{\partial f(x)}{\partial x} \cdot G_x, \hspace{0.5cm} G_x(t_0,x_0) = \textbf{\textit{I}}$$

where $\mathbf{G}_{\mathbf{x}} = \frac{\partial \mathbf{x}(t)}{\partial \mathbf{x}_0}$ is the first-order sensitivity matrix.

- Sparsity patterns exploited
 - Constraints' Jacobian and Hessian non-zero elements: < 0.1%

Results

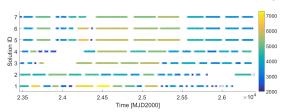
Submitted solutions

University of Strathclyde Engineering

Combinatoria

Evolution of the solutions

Global


optimisation

Results

Future idea

Solution ID	N. Launches	ĵ	Improvements in solution process
7 (The Mistery)	14	918.98	Larger population including diverse features.
6 (The One)	14	945.15	Multi-objective formulation of evolution
5 (Ghostbuster)	14	967.49	Added evolution algorithm to solution process,
			Small population of best submitted solutions.
4 (Anibal)	16	1028.72	Further relaxation of search overconstraints.
3 (Donald)	16	1059.54	Improved Cyclic Beam Search heuristics.
"Make Strathclyde great again"			Improved low-fidelity model.
			Improved global optimisation on high-fidelity model.
2 (Wrappy)	18	1133.94	Cyclic Beam Search.
, , , , , ,			Improved high-fidelity model.
			Added single and multiple-shooting refinement.
1 (Wary)	26	1713.07	Beam Search in the first 100 mission days.
, , ,			No thorough trajectory refinement.

Time and mass distribution of the missions of the submitted campaigns:

nciyue++

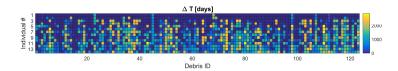
Results Final solution

Team & Resources

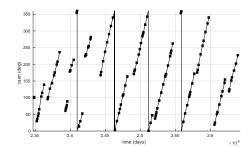
approacl

Combinatoria search

Evolution of


Global

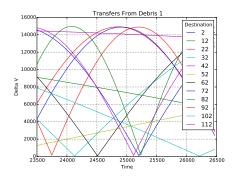
Solution

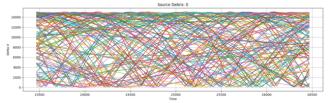

Results

Future idea

Difference in departure time from each debris between final solution and the initial 14 individuals used by MACS:

RAAN evolution of the spacecraft:




Results

Low-fidelity estimation of the ΔV for debris-to-debris transfer

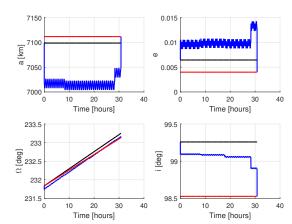
Cost of the transfer from debris 1 to other debris in the database:

Results

atriciyuc

Example of transfer between debris

Results


Black: departure orbital element

• Red: arrival orbital element

• Blue: High-fidelity orbital elements variation during transfer between debris

University of Strathclyde

The optimiser reduces the semi-major axis to exploit the natural J_2 drift

Team & Resources

Solution approach

Dynamical models

Search

Evolution of

Global

optimisation

Results

Future ideas

Team & Resources

Solution approach

Combinatoria

Evolution of

Global optimisatior

Solution

Results

- Complete the construction of the **surrogate model** for the low fidelity transfer estimation \rightarrow Multi-layer Perceptron Neural Network with 12 inputs (6 departure orbital elements, 6 arrival orbital elements), 2 outputs: time of transfer and ΔV
- Solve the problem as an integer/mixed integer programming problem: example bin-packing problem formulation
- Study the best generation of sequences for sequence patching: allow the best variety of sequences
- Study the evolutionary (non-) combinatorial approach and its possible applications
- Investigate further the best number of impulses for the problem
- Win GTOC next year :)

Team &

Solution approach

models

Evolution of

the solutions

optimisation

Solution

Results

Future ideas

while continuing pickling solutions...

```
79
80
81
               self.ocurrence = np.array([185045, 4408
               self.rarity bonus = 0.05*(1.0 - self.oc
82
83
                self.verbosity = verbosity
84
           def branch objfun(self,x):
 85
                f = x.Jfinal + random()*
 86
 87
                return f
  88
            def beam_objfun(self,x):
  89
                 f = x.Jfinal +random()*
  90
                 return
  91
   92
   93
   94
             # def objfun(x):
    95
                    dv launch = 0.5e3
    96
                    minlen = 100
    97
                    thislen = 100
     98
                    for i in x.dvs:
                        if x<=0.0 or x>= dv_launch:
    minlen = min(minlen, thislen)
     99
    100
```

GTOC art

Part of the GTOC team enjoying some space debris art... and wine, the day after

Team & Resources

approach

Combinatori

Evolution of

Global

Solution refinemen

Results