University of Strathclyde Engineering # Resources approach Combinatoria Evolution of Global optimisation Reculto Future ideas # On the generation and evolution of multiple debris removal missions Carlos Ortega Absil*, Lorenzo A. Ricciardi*, Marilena Di Carlo*, Cristian Greco[†], Romain Serra*, Mateusz Polnik*, Aram Vroom[†], Annalisa Riccardi*, Edmondo Minisci*, Massimiliano Vasile* - * Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow (United Kingdom) - † Delft Institute of Technology, Delft (The Netherlands) June 6, 2017 ## The team Team & Resources Dr Annalisa Riccardi Prof Mx Vasile Dr. Romain Serra Carlos Ortega Absil Lorenzo Ricciardi Marilena Di Carlo Mateusz Polnik Cristian Greco Aram Vroom **ARCHIE-WeSt** # Team & Resources Solution approach Combinatori Evolution of Global optimisation refineme Results - Slack instant messages, creation of discussion channels (#combinatorial_optimisation, #impulsive_transfer, #the_bakery, ...) - GitHub code developing - Wikispace sharing of information (problem considerations, plots, tutorials on parallel computing) - GDrive sharing of data (solution files, databases) # Computing resources Team & Resources Solution approach Combinatoria Evolution of Global optimisatioi Result - \bullet Archie-West: teaching cluster for the West of Scotland \sim 12400 core/hours used - Torque resource manager: 11 heterogeneous commodity hardware $\sim 60~{\rm cores}$ Team & Resources Solution Dynamic models Combinatoria search Evolution of the solutions Global optimisatio Solution Results Table 1: Solution Rankings for the Kessler Run (GTOC9) | Rank | Team Name | Missions | Removed | J in MEUR | |------|---------------------------------|----------|---------|-----------| | 1 | Jet Propulsion Laboratory | 10 | 123 | 731.2756 | | 2 | NUDT Team | 12 | 123 | 786.21452 | | 3 | XSCC-ADL | 12 | 123 | 821.37966 | | 4 | Tsinghua-LAD | 12 | 123 | 829.57987 | | 5 | NPU | 13 | 123 | 878.99821 | | 6 | Strathclyde++ | 14 | 123 | 918.9808 | | 7 | DLR | 14 | 123 | 949.85389 | | 8 | Missions Learners | 14 | 123 | 964.51134 | | 9 | The Aerospace Corporation | 14 | 123 | 1004.4860 | | 10 | Team Jena | 15 | 123 | 1022.9063 | | 11 | UT Austin | 15 | 122 | 1044.1787 | | 12 | NJU Team | 16 | 123 | 1047.9685 | | 13 | EFLMAN TEAM | 14 | 119 | 1107.6936 | | 14 | CU Boulder | 17 | 123 | 1150.8439 | | 15 | CAS-NUAA | 14 | 123 | 1182.0632 | | 16 | MTU-UoM | 16 | 122 | 1192.7433 | | 17 | NSSC-THU | 16 | 122 | 1210.3333 | | 18 | Brute WORHP | 18 | 123 | 1229.5475 | | 19 | The Goonies | 15 | 122 | 1238.6396 | | 20 | NablaZeroLabs | 16 | 123 | 1267.7501 | | 21 | TYSE | 16 | 123 | 1336.8590 | | 22 | TM | 18 | 123 | 1490.9659 | | 23 | Occitania | 22 | 120 | 1493.8567 | | 24 | ARGoPS | 20 | 123 | 1512.6017 | | 25 | Personal team | 23 | 123 | 1588.5770 | | 26 | GO to space | 20 | 112 | 1819.1391 | | 27 | UofI and Goddard | 23 | 123 | 1951.6797 | | 28 | LSPirates | 20 | 105 | 2164.2321 | | 29 | Astro-ASAP-UC3M | 13 | 85 | 3141.1951 | | 30 | Cal Poly SLO | 39 | 84 | 4467.8746 | | 31 | Team STAR Lab | 12 | 57 | 4481.7781 | | 32 | Nicolas RAVE | 13 | 18 | 6453.0254 | | 33 | National University of Colombia | 2 | 7 | 6511.5471 | | 34 | MeltedCode | 1 | 5 | 6594.1105 | | 35 | AMSS_GTOC | 1 | 4 | 6619.3569 | | 36 | Bremen optimizers | 1 | 2 | 6760.20 | Team & Resources # Solution approach Combinatoria Evolution of Global optimisation Results Future ideas ### Three-step process involving: - Low & high fidelity models - Global & local optimisers - Beam search & sequence patching method - ② Global evolutionary optimisation - 3 Local optimisation # Dynamical models Low-fidelity cost estimation of a transfer # University of Strathclyde Engineering # Team & Resources approach Dynamical models Combinatorial Evolution of the solutions Global optimisation Solution Result Future ideas #### Assumptions: - Keplerian motion - Circular orbits - No phasing #### Combination of two parts: - Hohmann transfer (2 in-plane maneuvers) - Change of orbital plane (i and Ω simultaneously) The cheapest combination of the two is chosen as the predicted cost. Incremental complexity of the model 1st model: J_2 secular perturbations only - ΔV s applied on velocity obtained from osculating elements - Propagation performed analytically with mean elements after conversion (same model as debris except for M) $$\dot{M}=n\left[1+ rac{3}{2}J_{2}\left(rac{R_{\oplus}}{p} ight)^{2}\sqrt{1-\mathrm{e}^{2}}\left(1- rac{3}{2}\sin^{2}i ight) ight]$$ 2nd model: J_2 complete model Numerical integration (predictor-corrector and Runge-Kutta) Dynamical models # Combinatorial search Incremental construction of launch campaigns - Team & Resources - approach - Combinatorial # search Evolution of Global optimisation optimisation Results - Itinerary $\{(D_j, t_j)\}$ - At level *k*, extend with either: - transfer to new target in active mission - new launch in available mission time intervals - Base algorithm: Beam Search - easy to control memory and runtime (Br, Be) - heuristics to avoid excess of permutations - J estimated with low-fidelity ΔV model (precomputed). - Various additional heuristics, corrections to the cost function, etc. gave solutions with different properties. ### Combinatorial search Incremental construction of launch campaigns Resource approach Combinatorial search Evolution of Global optimisation Solution Results Future ideas #### New launch heuristics: - **Cyclic exploration** of mission timeline (>95% solutions). - Other used: concurrent search, cheap transfer density, etc. #### Naïve initialisation: - Each search from all 123 debris. - Total \sim 150 searches in a grid of launch times t_0 . - Keep a database, give priority to promising t_0 values. - Additional heuristics: - Maximise length of shorter mission (\rightarrow 13 launches!). - Per-debris rarity bonus, based on: - Cluster size first and second statistical moments. - Debris frequency in database of unexpensive missions. # Combinatorial search Sequence patching - Resource - approac - Combinatorial # search the solutions Global optimisation Solution Result Future ideas - Input Feasible sequences - Output Launch campaign - Algorithm Find a clique in the unidirected graph (N,A) - N sequences - A pairs of compatible sequences - Extracted campaigns covering up to 116 debris from a database of 2.2 mln samples without single launches Figure: Partial graph of 1500 compatible sequences # Evolution of the solutions The Time-shuffler encoding # Team & Resources Dynami Combinatoria search Evolution of the solutions Global optimisation Solution Results Future ideas #### ldea 1 - each debris associated to a (free) departure time - times are then sorted in ascending order \rightarrow ID sequence - $\Delta t \leq 30$ between sorted times define missions - within each mission, $5 \le \Delta t \le 30$ is imposed - between missions $\Delta t \geq 43$ is imposed (3 days safety margin, 10 days for removal of first and last) | t _{deb} | 69.2 | 4.4 | 41.6 | 17 | 3.1 | |------------------|------|-----|------|----|-----| | ID | 1 | 2 | 3 | 4 | 5 | | t _{corr} | 3.1 | 8.1 | 17 | 60 | 69.2 | |-------------------|-----|---------|----|--------|------| | ID | 5 | 2
M1 | 4 | 3
N | 1 | The Time-shuffler encoding allows working only on continuous variables \rightarrow timings are treated explicitly, combinatorial problem is treated implicitly, gradient based refinement possible Debris sequence, visit times and mission lengths are optimised concurrently \rightarrow holistic global optimisation of the whole campaign (transfers evaluated with low fidelity model) • To reduce number of missions, promising mass-unfeasible solutions should be retained \rightarrow multi-objective problem, with mass constraint violation as second objective $$\min_{\mathbf{L_t} \leq \mathbf{t} \leq \mathbf{U_t}} \mathbf{J}^*(\mathbf{t}), \qquad \mathbf{t} = (t_1, ..., t_j, ..., t_{123})$$ s.t. $$5 \leq t_{s_j+1} - t_{s_j} \leq 30 \qquad \forall s_j \in M_i, \forall M_i$$ $$t_{s_1, M_{i+1}} - t_{s_{\text{end}}, M_i} \geq 43 \quad \forall M_i$$ solved with MACS, initialised with solutions from Beam Search Evolution of the solutions # Global optimisation #### Minimisation of the cost of the debris-debris transfer University of Strathclyde Engineering Solution approach Combinatoria search Evolution of the solutions Global optimisation Calada Results Future ideas - Objective: $\min \sum_{i=1}^{5} \Delta V_i$ - Optimisation variables: times of application and magnitude and direction of impulsive $\Delta V \mathbf{s}$ - Population-based algorithm MP-AIDEA (Multi-Population Adaptive Inflationary Differential Evolution Algorithm): https://github.com/strath-ace/smart-o2c #### 1st GLOBAL OPTIMISATION Model: J₂ secular perturbation Solver: MP-AIDEA #### 2nd GLOBAL OPTIMISATION Model: J_2 complete model Solver: MP-AIDEA #### LOCAL OPTIMISATION Model: J₂ complete model Solver: Matlab fmincon active-set # Solution refinement Local optimization and tolerance matching # University of Strathclyde Engineering Team & Resources Solution approach models Combinatoria Evolution of the solutions Global optimisation Solution refinement _ ... ### Direct multiple-shooting transcription scheme - Initial guess: solution from local single-shooting - J₂ complete dynamical model - Runge-Kutta 4 integration scheme - WORHP as NLP solver # Accuracy and computational efficiency enhancement Augmented variational dynamics to compute first and second-order derivative information $$\tfrac{\partial G_x(t,x)}{\partial t} = \tfrac{\partial f(x)}{\partial x} \cdot G_x, \hspace{0.5cm} G_x(t_0,x_0) = \textbf{\textit{I}}$$ where $\mathbf{G}_{\mathbf{x}} = \frac{\partial \mathbf{x}(t)}{\partial \mathbf{x}_0}$ is the first-order sensitivity matrix. - Sparsity patterns exploited - Constraints' Jacobian and Hessian non-zero elements: < 0.1% # Results #### Submitted solutions University of Strathclyde Engineering Combinatoria Evolution of the solutions Global optimisation #### Results Future idea | Solution ID | N. Launches | ĵ | Improvements in solution process | |--------------------------------|-------------|---------|--| | 7 (The Mistery) | 14 | 918.98 | Larger population including diverse features. | | 6 (The One) | 14 | 945.15 | Multi-objective formulation of evolution | | 5 (Ghostbuster) | 14 | 967.49 | Added evolution algorithm to solution process, | | | | | Small population of best submitted solutions. | | 4 (Anibal) | 16 | 1028.72 | Further relaxation of search overconstraints. | | 3 (Donald) | 16 | 1059.54 | Improved Cyclic Beam Search heuristics. | | "Make Strathclyde great again" | | | Improved low-fidelity model. | | | | | Improved global optimisation on high-fidelity model. | | 2 (Wrappy) | 18 | 1133.94 | Cyclic Beam Search. | | , , , , , , | | | Improved high-fidelity model. | | | | | Added single and multiple-shooting refinement. | | 1 (Wary) | 26 | 1713.07 | Beam Search in the first 100 mission days. | | , , , | | | No thorough trajectory refinement. | | | | | | #### Time and mass distribution of the missions of the submitted campaigns: #### nciyue++ # Results Final solution Team & Resources approacl Combinatoria search Evolution of Global Solution Results Future idea Difference in departure time from each debris between final solution and the initial 14 individuals used by MACS: RAAN evolution of the spacecraft: Results #### Low-fidelity estimation of the ΔV for debris-to-debris transfer Cost of the transfer from debris 1 to other debris in the database: Results #### atriciyuc #### Example of transfer between debris Results Black: departure orbital element • Red: arrival orbital element • Blue: High-fidelity orbital elements variation during transfer between debris University of Strathclyde The optimiser reduces the semi-major axis to exploit the natural J_2 drift Team & Resources Solution approach Dynamical models Search Evolution of Global optimisation Results #### Future ideas Team & Resources Solution approach Combinatoria Evolution of Global optimisatior Solution Results - Complete the construction of the **surrogate model** for the low fidelity transfer estimation \rightarrow Multi-layer Perceptron Neural Network with 12 inputs (6 departure orbital elements, 6 arrival orbital elements), 2 outputs: time of transfer and ΔV - Solve the problem as an integer/mixed integer programming problem: example bin-packing problem formulation - Study the best generation of sequences for sequence patching: allow the best variety of sequences - Study the evolutionary (non-) combinatorial approach and its possible applications - Investigate further the best number of impulses for the problem - Win GTOC next year :) Team & Solution approach models Evolution of the solutions optimisation Solution Results Future ideas while continuing pickling solutions... ``` 79 80 81 self.ocurrence = np.array([185045, 4408 self.rarity bonus = 0.05*(1.0 - self.oc 82 83 self.verbosity = verbosity 84 def branch objfun(self,x): 85 f = x.Jfinal + random()* 86 87 return f 88 def beam_objfun(self,x): 89 f = x.Jfinal +random()* 90 return 91 92 93 94 # def objfun(x): 95 dv launch = 0.5e3 96 minlen = 100 97 thislen = 100 98 for i in x.dvs: if x<=0.0 or x>= dv_launch: minlen = min(minlen, thislen) 99 100 ``` # **GTOC** art Part of the GTOC team enjoying some space debris art... and wine, the day after Team & Resources approach Combinatori Evolution of Global Solution refinemen Results