
AAS 19-897

GTOC-X: OUR PLAN TO SETTLE THE GALAXY (ESA-ACT)

Dario Izzo∗, Marcus Märtens†, Ekin Öztürk‡, Mate Kisantal§, Konstantinos
Konstantinidis¶, Luı́s F. Simões‖, Chit Hong Yam∗∗, Javier Hernando-Ayuso††

The 10th edition of the Global Trajectory Optimization Competition (GTOC-X)
invited participants all over the world to compete against each other to design effi-
cient missions with the goal to settle our galaxy. Leveraging concepts of interstel-
lar space travel like generational ships, the participants were tasked to develop set-
tlement plans as each newly settled star system could spawn new settlement ships.
This work presents the solution strategies developed by the ESA-ACT during the
month long competition. In particular, we unfold the mathematical structure of
the objective function that demanded a uniform spread throughout the galaxy and
discuss its implications. We describe a tree search that is able to grow settlement
trees concurrently over time starting from multiple initial points. Furthermore, we
deploy several techniques to rearrange already established settlement trees in order
to reduce the overall propulsive velocity change required.

INTRODUCTION

In about ten thousand years from the present, humanity will reset its counting of years to zero.
Year Zero will be the year when humanity decides the time is ripe for the human race to boldly
venture into the galaxy and settle other star systems.1

This visionary text introduced the problem released by the Jet Propulsion Laboratory for the tenth
edition of the Global Trajectory Optimization Competition (GTOC-X). The problem, described in
full details in1 and also dubbed “Settlers of the Galaxy”, has a highly complex and unusual math-
ematical structure containing elements of dynamics, optimization, graph theory, and trajectory de-
sign. The dynamics is that of motion in a central force field designed to approximate observed galac-
tic rotation curves and thus is far from the familiar and more comfortable (even when perturbed)
Keplerian dynamics. The merit function of the optimization element involves, rather creatively, to
settle stars so that their spatial distribution matches some assigned probability distribution, making
the fitness landscape also rather unfamiliar. The choice of interstellar vessels, and in particular the
division between mother, fast and settler ships, as well as the possibility to launch 3 spaceships
∗Scientific Coordinator, Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, NL.
†Research Fellow, Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, NL.
‡Young Graduate Trainee, Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, NL.
§Young Graduate Trainee, Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, NL.
¶Research Fellow, Advanced Concepts Team, European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, NL.
‖Lead Data Scientist, ML Analytics, 2670-560 Loures, Portugal.
∗∗Mission Analysis Lead, Mission Analysis and Flight Dynamics Team, ispace-inc, Sumitomo Shibakoen Building 10F,

2-7-17, Shiba, Minato-ku, Tokyo, Japan 105-0014.
††Flight Dynamics Engineer, Mission Analysis and Flight Dynamics Team, ispace-inc, Sumitomo Shibakoen Building 10F,

2-7-17, Shiba, Minato-ku, Tokyo, Japan 105-0014.

1

Figure 1. Actual and target distributions when the entire galaxy is settled. The
resulting contributions to the errors Er, Eθ are also shown.

from each settled star, makes the resulting graph also quite peculiar to this problem and (at least to
us) unfamiliar. Finally, the trajectory design element, while maintaining some familiar approxima-
tions such as impulsive ∆V manoeuvres, also involves manoeuvre spacing constraints and multiple
impulses capabilities that, when in connection to the underlying galactic dynamics, make the intu-
ition gained in studying similar problems in the solar system rather untrustworthy, or anyway less
accurate.

This report is structured to follow the logic used by the authors (team ESA-ACT) during the
one month long GTOC-X competition which lead up to their final solution. First, we analyze the
merit function given to us by the problem statement and discuss a few of its interesting properties.
Then, we introduce the building blocks needed to design, in this context, single multiple impulses
generational interstellar missions. The choice of mother ships and fast ships to get the galaxy
settlement started is described in the following section. Then we describe the algorithm developed
to grow the settlement trees, that is the self-replicating cycle of sending out new settler ships from
previously settled stars to further spread mankind. In the following section, we describe a set of
refinement techniques that further improve the settlement trees in particular with the goal to reduce
the ∆V usage by rewiring the tree topology and adapting the epochs of settlement. Finally, we
summarize the complete process that resulted in our best solution and conclude with an evaluation
of its properties.

UNDERSTANDING THE MERIT FUNCTION

The merit function to maximize (discounted for the time bonus factor here not considered) has
the form:

J = Nησ = N

(
1

1 + 10−4N(Er + Eθ)

)
︸ ︷︷ ︸

η

(
∆Vmax

∆Vused

)
︸ ︷︷ ︸

σ

where N is the number of stars settled, Er > 0 and Eθ > 0 are the errors made in matching two
assigned target distributions gr and gθ for the star locations in the galaxy, ∆Vmax is the maximum
∆V available and ∆Vused the one used cumulatively by all transfers. The term η < 1 is here called
settlement efficiency and describes how close the r and θ distributions of the settled stars (fr, fθ) are

2

Figure 2. A uniform two dimensional distribution and an equivalent spiral having
the same settlement efficiency.

to the target ones (gr, gθ). The last term σ > 1 is the ∆V efficiency and rewards low ∆V transfers
on average. The first thing to note in this merit function is that the three terms, N, η and σ are
coupled in nontrivial ways. It is difficult to increase N without reducing σ as the time to establish
the settlements is limited to 90 million years (=90 Myr), and short interstellar transfers results in
a larger ∆V . Increasing N also provokes, eventually, a drastic η decrease as the star distribution
in the galaxy is far from the target one. This last point is illustrated in Figure 1 where fr, gr and
fθ, gθ are shown for the case of the entire galaxy being settled, together with the resulting error
contributions to Er and Eθ. The excessive number of stars in the inner galaxy correspond to errors
contributions of the order of hundreds driving η to 7.023 × 10−5. On the other hand, the coupling
between η and σ is less obvious and it is indeed possible, to some extent, to increase σ keeping both
η and N fixed.

We note that the errors Er and Eθ are independent: Given N points ri, θi with a settlement effi-
ciency η corresponding to a certain geometry in the two dimensional space, different geometries can
be achieved by the points ri, θpi , where pi is any permutation of the N indexes, while maintaining
the same η. If, for example, we choose pi to produce a monotonically increasing series of θ and r
values, the points will be placed on a spiral spanning 2π. This fact is important as it informs us that
it is not necessary to settle the galaxy uniformly in its two dimensions: it is also possible (according
to the value of N), to find stars, for example, along some one dimensional spiral and obtain the very
same settlement efficiency η. An example of such two iso-η spatial distributions is given in Figure
2. While settling along such a spiral would have benefits in terms of ∆V and available ships, it is
not given that there is sufficient amount of stars close enough to achieve high J .

With regards to the computational complexity of the merit function we note that a single compu-
tation of η requiresO(N) operations. For the design of our algorithms it is of interest to compute the
single individual contributions to η, for example to select which stars to add and which to remove
as to increase η. This operation can be implemented in constant time: Consider the case where the
first N stars have orbital radius ri and an associated efficiency η′. Say we want to add one more

3

Figure 3. Minimum time trajectories of fast ships to all stars within 40 Myr. Star
positions are visualized at 0 Myr (left) and 90 Myr (right). The red dot indicates the
Sol system.

star at radius R and compute δη = η− η̂. As part of the merit computation we need to compute the
functions fr(r), fθ(θ), an operation that is O(N). Following the original notation in1 and limiting
our argument to only fr (for the angular equivalent fθ a similar argument applies), we can write:

(N + 1)fr(r) = Nf̂r(r) + f(r;R, sr)

where f̂r(r) is the fr function computed for N stars. Thus the cost to determine δη, once η′ and
thus f̂r(r) have been computed, is constant. One can thus sort any ensemble of N stars with respect
to their individual contributions to η with complexity O(N logN) and compute the δη for all N
stars of a given ensemble with in O(N).

DESIGNING FAST SHIPS, MOTHER SHIPS AND SETTLER SHIPS

In order to design multi-impulse trajectories to transfer between stars in the galaxy, two main
building blocks are needed: a) an efficient numerical integrator for the differential equations de-
scribing the motion of the interstellar ships in the galactic medium and b) a solver for the galactic
Lambert problem.2 For the first block we implement a Taylor propagator,3 while for the second we
make use of Powell hybrid method4 to find the starting velocity v1 that reaches, in T , the prescribed
final position r2 from r1. We quickly introduce the different types of ships:

Fast Ships

Fast ships have a total ∆V budget of 1500 km/sec and n = 2 impulses to perform their interstellar
jump. The design of fast ship trajectories to a given star s requires a solution to the following
problem:

minimize: T
subject to: ∆V1(T) + ∆V2(T) ≤ 1500

where the two velocity increments ∆V1 and ∆V2 are computed solving the Lambert problem defined
by rsun to rs(T) and T . Given the simple capacities of the fast ships, it was possible to compute
their two-impulse transfer to all stars in the galaxy exhaustively. Figure 3 shows at which times each

4

star is reachable from Sol given a maximum flight time of 40 Myr (to allow settlement trees enough
time to grow).

Mother Ships

a)

T

1ΔV s1

1

s0

s0 s1

T1

T +11
1ΔV

2
ΔVc)

s1

s2

T2

T3

1ΔVs0

b)

T1

Figure 4. Different leg types for building mother ship trajectories. a) Basic impulsive
leg. b) Two stars one impulse. c) One star two impulse

The ∆V budget of a mother ship is 500 km/sec, three times lower than that of a fast ship. While
a mother ship may perform up to n ≤ 3 impulses instead of only two, each impulse is limited to
200 km/sec and restrictions apply on when impulses are allowed. The particularity of the mother
ship is that it is capable of releasing up to 10 settlement-pods to settle multiple star systems during
its flight. The settlement pod has a ∆V budget of 300 km/sec to rendezvouses with the target star,
therefore the mother ship has no need to match the velocity of the star to settle it and can simply
pass by. Impulses of the mother ship have to be 1 Myr apart from each other and also 1 Myr
between settlement attempts, limiting the maneuverability of this type of ship. To make full use
of the available settlement pods, the task is to align the available impulses such that multiple star
systems may be settled during each leg.

Below we discuss three different mother ship leg types, that can be combined in trajectories as
long as ∆V and impulse constraints are met. A basic impulsive leg targets a single star with an
impulsive manoeuvre. An alternative is to target two stars with a single impulse. Lastly, we can use
two impulses to reach a single star faster. Figure 4 illustrated all three leg types.

Basic impulsive leg The most basic mother ship trajectory can visit three stars with three im-
pulses, solving three separate Lambert problems. In this case each leg targeting a star s can be
treated as an independent optimization problem:

minimize: T
subject to: ∆Vmother ≤ min(∆Vleft, 200) km/sec

∆Vpod ≤ 300 km/sec

Two stars one impulse In order to deploy more of the available settlement pods, legs can be
extended to target not just one, but two stars simultaneously with a single impulse: We target the
first star s1 by solving a Lambert’s problem, and set the time of the first impulse (T1) and the
time-of-flight (T2) such that a second star s2 is also passed at a later time (T3). This results in a

5

decision vector with three independent time components (T1, T2, T3), which allow us to minimize
the distance between the final position of the mother (rmother) and the second target star (Ds2).

minimize: Ds2(T1, T2, T3)
subject to: ∆Vmother ≤ min(∆Vleft, 200) km/sec

∆Vpod1 ≤ 300 km/sec
∆Vpod2 ≤ 300 km/sec
rmother(T2) = rS1(T2)
rmother(T3) = rS2(T3)

Deploying this technique to each leg, these mother ship trajectories can settle up to six stars.

One star two impulses In some cases we can benefit from firing two subsequent impulses: es-
sentially providing an extra kick that allows the mother ship to reach farther in a given time frame,
or arrive to a star earlier. Settling a star earlier has exponential benefits a few generation later. Al-
ternatively, by flying further a mother ship can potentially cover areas that are only reachable with
fast ships otherwise.

In these legs we fully constrain the second impulse with regards to its time, direction and the
magnitude: it is done 1 Myr after the first impulse with 200 km/sec in the direction of the current
velocity vector. Given these constraints, the second impulse can be treated as a property of the
propagation, therefore the problem effectively reduces to a simple Lambert’s problem, solved with
a similar optimization as for the basic impulsive leg.

Settler Ships

Settler ships are the main part of the fleet as the majority of settled stars are due to settler ships
visiting. Once a star has been settled (which consumes the original settler ship), it will generates up
to 3 new settler ships that can be deployed to further advance the settlement tree after 2 Myr.

A settler ship has a total ∆V budget of 400 km/sec, n ≤ 5 impulses to perform the interstellar
jumps and a constraint on each impulse magnitude of ∆Vi < 175 km/sec. Consequently, a two
impulse strategy is insufficient to exhaust the total ∆V budget. Therefore, in some transfers when
the time of flight is sufficiently long, additional impulses may be included.

For most of the time we are interested in time-optimal transfers of settler ships, but when a max-
imum travel time is defined, corresponding mass-optimal transfers can be generated by minimizing
the accumulative ∆V of all impulses.

ESTIMATION OF NUMBER OF SETTLED STARS ACHIEVABLE

Some initial back-of-the-envelope calculations can be made to estimate the maximum number of
stars that can be settled given an average time-of-flight between settled stars. A simple exponential
growth model was created for that purpose:

Nt = 3np + 3
∑np

n=1 nsp
Gset,i + 2nsp

Gset,f

where Nt is the total number of stars settled, np = 10 is the number of stars settled by each
mother ship, nsp = 3 is the number of settlers spawned by each settled star, and Gset,i is the number

6

4 5 6 7 8 9
Mothership travel time between stars (Myr)

101

102

103

104

105

Nu
m

be
r o

f s
ta

rs
 c

ol
on

ize
d

Total
Mothership
Settlers - Mothership
Settlers - Fast

Figure 5. Number of stars settled vs time-of-flight between stars for the mother ships.
The various curves represent the number of stars settled by the mother ship pods, by
settler ships tracing back to mother ship settlement nodes and by settler ships tracing
back to fast ship settlement nodes. The vertical dotted line marks the nominal time-
of-flight between stars for a mother ship.

of settler spawning generations originating from a star i originally settled by a mother ship (or a star
f settled by a fast ship). The number of settler spawning generations is given by:

Gset,i =
Efin−Eset,i
tflight+twait

where Efin = 90 Myr is the end epoch for the problem, Eset,i is the epoch of the original settle-
ment of a star i by a mother ship or a fast ship, tflight is the average time-of-flight for settler ships
from their spawning star to the star they will settle, and twait = 2 Myr is the wait time for a settled
star to spawn settler ships.

The nominal settlement epochs Eset,i for the stars settled by the mother ships (or the time-of-
flight between stars for the mother ships) were set 8 Myr apart, so that the ten pods would be able
to be deployed within the 90 Myr time limit with some margin. The time-of-flight between stars for
the settler ships tflight was equal to that of the mother ships divided by the ∆V ratio between settler
and mother ships, i.e. the settler ships were considered as having a time-of-flight between stars of
1.25 times that of the mother ships. For the two stars initially settled by the fast ships, the settlement
epochs Eset,f were set to 20 Myr. It was also assumed that it would be possible for all three settler
ships spawned by a settled star to reach another star to settle at each settlement generation.

The number of stars settled at an epoch of 90 Myr was calculated in the above simple model, as
a function of the time-of-flight of the mother ship between stars. The results are given in Figure 5.

For the baseline time-of-flight between stars for the mother ships of 8 Myr, a total of ∼ 5000
stars are settled. The majority of stars are settled by settler ships spawned by the mother ship pods,
and in particular from the earlier settlement nodes where the exponential settlement trees have had
time to grow. Settler ships spawned by fast ship settled stars contribute less, but still significantly.

7

30 20 10 0 10 20 30

30

20

10

0

10

20

30

20303
10.48

1282

52.79

27.69

36.05

42.04

44569

99794
14.64

17571
17.78

85454
31.24

53784
34.6

5167
54.18

29054
62.5

71012

36065

59520
32.31

Figure 6. Stars visited by the fast- and mother ships rendered at 90 Myr. Star ID and
settling time (in Myr) indicated for each star. Connecting lines show visiting order,
not the actual trajectory.

If the fast ship settled stars can be settled at an earlier epoch, the exponential growth from them
will approximate that of the mother ship settled stars. However, this will be at the cost of proper
star distribution, as fast ships are expected to be crucial in reaching distant areas of the galaxy. A
very high sensitivity to changes in time-of-flight between stars is observed, with a high pay-off in
number of inhabited stars if stars can be settled at faster rates. Shorter times-of-flight however will
likely result in a worse ∆V efficiency. Therefore, a trade-off emerges between N and σ.

THE CONCURRENT TREE SEARCH

Each settlement created by a fast ship or a mother ship is the root node of a settlement tree.
Starting from this root node, the settlement tree grows by sending settler ships to other stars, which
become new nodes in the tree once a settlement is establishment. All settlement trees together
constitute the settlement forest, which encapsulates the largest part of a solution for the GTOC-X
challenge. This section describes our strategy for generating settlement forests based on the initial
conditions.

Initial Conditions

The initial conditions are defined by the combination of mother ships and fast ships used to
settle the first stars. It is important to select root nodes that permit the growth of good settlement
trees such that the final settlement forest achieves a high merit J . Figure 6 shows an example of
valid initial conditions, highlighting the star id of each root node and its epoch of settlement. The

8

particular initial conditions of Figure 6 are part of our final solution, whose complete generation
will be explained at a later section.

Why a Concurrent Search?

In a naive greedy search, a tree is grown by selecting a departure star from the tree and a target
star from a set of possible targets, and adding this star to the tree. The target star is selected in order
to minimize a cost function like the time of flight (tof) or the ∆Vused of the corresponding settler
ship transfer.

A closer look reveals that neither of those cost functions supports the goal of achieving a high
merit after the time window of 90 Myr ends: A tof -greedy search leads to an exponential growth
with high N (up to 25,000 in our preliminary tests), but tends to cluster, reducing η and hence J
to values on the order of 1. A ∆Vused-greedy search is too conservative and settles only a small
number of stars, limiting the merit on the order of 10. Further complications arise from the fact
that trees grown independently from different root nodes might lead to overlaps and thus a waste of
resources. To mitigate this issue, we design our search strategy to grow the entire settlement forest
simultaneously, i.e. by growing the settlement trees concurrently.

The concurrent search also needs to be guided by a cost function: While it is tempting to select
the next settlement according to the highest possible increase in η this would neglect that the final
merit J is dominated by the product of η and N . For example, a distribution with 10 stars and an
efficiency of 80% has a merit of 8 whilst a distribution with 1000 stars and an efficiency of 40%
has a merit of 400 (assuming both solutions have σ = 1). An ηN -greedy concurrent search avoids
this issue by minimizing the reduction in η at each step while increasing the number of stars in the
settlement forest.

Overview of the Algorithm

The pseudo-code in Algorithm 1 describes the essential steps required for the concurrent tree
search and the setup of its parameters.

To settle any additional star during the search, a time-optimal transfer needs to be computed.
While the computation of a single 2-impulse time-optimal transfers takes, on average, 50 ms on our
servers, this is not sufficient for an exhaustive search: Assuming 18 root nodes and 99, 982 possible
target stars, the first step of an exhaustive search would require the computation of 18 × 99, 982
transfers and thus lasting for 1, 799, 676 × 50/1000 ≈ 25 hours. The second step would take
26.4 hours, and extrapolating this further implies that for settlement trees with 2500 stars, it would
take more than 10 years to find a single solution! From this it is clear that the number of transfer
computations must be reduced.

The number of transfer computations required is determined by the number of stars that are in
the settlement forest and the number of possible targets. Since the search gradually increases the
number of stars in the settlement forest, the only way to reduce the number of transfer computations
is to restrict the set of possible targets. We deploy the following strategies to reduce the amount of
computations required:

• Choosing a background set of stars: Since one ideal distribution is a grid in the xy-plane, we
decreased the total number of stars to ≈ 20, 000 out of the 100, 000 by a selection based on
grid points of a finite cell-size (0.25 pc) in the xy-plane.

9

input : Set of root nodes D0, set of possible targets A0

parameters: number of candidates from ranking m0 = 10,
maximum number of candidates mmax = 200,
minimum time of flight for 4-impulse tofmin = 5 Myr,
minimum generation gmin = 5

output : Settlement trees S
begin

m←− m0

n←− 1
S ←− {}
Let G be a hashmap such that G[d] = 1,∀d ∈ D0

while m < mmax and |An| > 0 do
Tn ←− {};
for d ∈ GetStarsWithShips(Dn) do
C ←− GetCandidateStars(d, m, An)
C′ ←− FilterByEfficiency(C)
for t ∈ C′ do

if transfer t is feasible then
Tn ←− Tn ∪ {(d, t)}

end
end

end
if |Tn| > 0 then

(d, t)←−FindMaxEfficiencyImprovement(Tn);
Dn+1 ←− Dn ∪ {t}
An+1 ←− An/{t}
G[t]←− G[d] + 1
if tof > tofmin and G[t] < gmin then

Use 4-impulse transfer
else

Use 2-impulse transfer
end
S ←− S ∪ {(d, t)}

else
m←− 2m;

end
n←− n+ 1;

end
end

Algorithm 1: Concurrent tree search

10

• Ranking stars and selecting the top m candidates: Instead of computing the transfer from a
star to all possible stars, we only compute transfers to the m nearest stars to the departure star
as the resources required to reach distant stars become too expensive. To avoid discarding
stars that lead to favourable transfers, a suitable ranking criteria that allows for a fast compu-
tation needs to be in place. Previous works have shown that proximity in terms of Euclidean
distances does not necessarily imply favorable transfer times.5 Thus, instead of the Euclidean
distance we rank our stars according to the orbital phasing indicator that we deployed already
in previous GTOC challenges.6

• Filtering stars that do not meet the minimum efficiency requirement: As the transfer compu-
tations take the largest bulk of the time of the inner loop in Algorithm 1, the stars are filtered
based on the selection criteria before the transfer is computed.

• Caching: Due to the fact that Tn+1 ∩ Tn 6= ∅, previously computed transfers can be saved in
a look-up table to avoid their reevaluation.

Selecting a Star

Adding a star to the current settlement forest changes the efficiency of the distribution by a certain
amount that we can compute directly. If we denote the efficiency of a distribution as η(Dn), then
the change in efficiency is ∆η(t) = η(Dn ∪ {t})− η(Dn).

During the search, we filter out all target stars that do not meet the minimum ∆η threshold. This
threshold is set adaptively according to the following formula

∆η(t) >
k − η(Dn)

|Dn|+ 1

where k = −0.01 is a constant that measures the change in η|Dn| and was chosen based on experi-
mentation.

After computing all the transfers to the filtered set of targets, we select the star that maximizes
∆η and use that as a transfer target. Since multiple departure stars may have transfers to this target,
we pick the transfer with the shortest tof .

Depending on the hop distance towards the root node of the corresponding settlement tree, we
optimize the transfer either for 4 impulses (departing star is not further than 5 hops away from the
root) or 2 impulses (otherwise). Exceptions are transfers that have a shorter time of flight than 5
Myr, which are optimized for 2 impulses regardless of their distance. Transfers with 4 impulses can
utilize the full ∆V budget of settler ships and thus save time during the early phases of the solution
which in turn accelerates the spreading of subsequent settlements.

Note that all settler ship transfers, regardless of their number of impulses, are always optimized
for minimum transfer times.

TOPOLOGICAL REFINEMENTS OF SETTLEMENT TREES

Topological refinements are post-processing steps that take a settlement forest (as delivered by
the concurrent tree search) and aim to either improve the merit J by means of local modifications or
prepare the settlement trees for further optimization. In the following, we discuss these techniques
in detail.

11

Figure 7. Left: The mass-optimal transfer to the leaf stretches the epoch of arrival to
90 Myr by saving ∆V . Right: An inner node gets rewired by a shortcut, turning its
previous parent into a leaf and allowing for further leaf stretching.

∆V -refinement

This refinement consists of a collection of operations which are aimed to increase σ while keeping
the set of settled stars (and thus N and η) unchanged. Since the concurrent tree-search is designed
to deliver time-optimal transfers, the ratio σ can often be improved by substituting the time-optimal
transfers towards leaf-nodes with mass-optimal transfers (constrained to an arrival before the 90
Myr deadline). We call this operation leaf stretching as it stretches, for the majority of cases, the
time of the settlement of the leaf node to 90 Myr, resulting in a lower total ∆V .

While transfers to leaf nodes can be stretched, transfers to inner nodes are more challenging to
optimize, as the time schedule of inner nodes needs to allow for the successive settlements to take
place. However, there exist situations for which inner nodes can be turned into leaf nodes without
the risk of violating any scheduling constraints. For example, an inner node can turn into a leaf if
all its children become settled by different means, i.e. by utilizing inner nodes that are still capable
of sending additional settler ships. These unsent ships may also create opportunities to establish
shortcuts within a tree and thus gain some time for further refinement steps. Figure 7 illustrates the
principle between node stretching and shortcuts.

Since the out-degree of each node can never be larger than 3 (the maximum amount of new
settler ships that are generated 2 Myr after a star has been settled), it follows that each inner node
can reach at most 12 other nodes within 2 hops. Fixing this inner node as the root of a settlement-
subtree, we can exhaustively enumerate all possible sub-trees that can be constructed to visit these
12 other nodes. If any of these nodes are not leaf nodes and need to spawn new settler ships, we
add the corresponding arrival-times as constraints to the optimization problem and minimize the
cumulative ∆V for all transfers involved. We call the solution of this problem the mass-optimal
equivalent subtree, as it effectively settles the same stars but rewires transfers in order to save ∆V
in comparison to the original subtree. Figure 8 shows a schematic depiction of this rewiring process.

We start searching for mass-optimal equivalent subtrees beginning from the grandparents of the
leaves and working ourselves iteratively deeper until we reach the root of the corresponding settle-
ment tree. Because this rewiring processes allows nodes to change their depth in the tree, it can be
applied repeatedly, however with diminishing returns.

12

Figure 8. An exhaustive enumeration of all possible subtrees allows to find the mass-
optimal equivalent subtree (right) by rewiring inner nodes over two levels of depth
while fulfilling arrival and degree constraints.

Reduction

Reduction is an aggressive refinement strategy that checks whether there exists a subset of leaf-
nodes whose removal would result into an increase of η. Finding the optimal subset to remove
can be a computationally demanding problem, which is why we deploy a heuristic that aims to
minimizeEr andEΘ. The heuristic constructs two histograms of r and Θ and identifies overflowing
and underflowing bins of stars with respect to an optimal distribution. It then proceeds to remove
random subsets of leaf nodes from an overflowing bin in one of the two histograms while avoiding
unbalancing the other histogram. Once removed, nodes may also be reinserted again in case an
underflowing bin would benefit from it. We terminate the heuristic if after several trials η does
no longer improve. This refinement is particularly aggressive as it decreases N without paying
any attention to σ, and consequently can lead to a lower merit J if the improvement in η can not
compensate.

Regrowth

Regrowth is a refinement that takes an existing settlement tree, removes branches whose removal
improves ηN , and then runs the concurrent tree search on the shrunken settlement forest. The
concurrent tree search takes transfers that are ηN -optimal with respect to the settlement forest at
each of its iterations, but these transfers may not necessarily be ηN -optimal at later stages of the
search. Thus, some earlier transfers can be removed and new branches can be grown that improve
ηN . The regrowth procedure grows these new branches concurrently in order to keep the efficiency
as high as possible.

Padding

Padding is a refinement strategy which aims to increase N by settling additional stars (preferably
with a low ∆V) from nodes that are still capable of spawning settler ships. It is possible that due to
the background distribution deployed during the concurrent tree search, some useful transfers have
been overlooked, which is why for this refinement the complete local neighborhood of a star is taken
into consideration. Padding always improves N but typically leads to a decrease in η, as it tends to
produce clusters. Thus, a padding transfer is only kept if its potential increase in σ compensates for
any decrease in η.

13

Figure 9. Our best found solution at time t = 90 Myr. Dark red lines indicate fast
ships, orange lines mother ship legs. Shown is not the actual trajectory but straight
line segments between settlement maneuvers.

THE BEST SOLUTION FOUND

During the four week long competition, multiple solutions were generated that allowed our team
to learn about the merit function. Based upon our insights, we took the following high-level deci-
sions for the design of our final solution:

1. Both fast ships travel to the outer rims of the galaxy to settle stars with approximately r > 20
kpc and −1 ≤ Θ ≤ 1.

2. One mother ship releases a settlement pod quickly to spread settler ships towards the center
of the galaxy r < 10 kpc and 1 ≤ Θ ≤ 3. Further settlement pods are targeted for the eastern
areas of the galaxy (Θ ≈ ±3).

3. The remaining two mother ships are spread out to fill in missing regions at the south of the
galaxy, roughly corresponding to distances between 10 and 20 kpc and angles−3 ≤ Θ ≤ −1.

Several candidate trajectories for all three parts of this strategy have been developed, but required
further selection. Balancing out our computational resources, we performed a search on several 100
different combinations of fast and mother ships and, which we picked by hand. Each combination
resulted in a concurrent tree search that took from 5 to 10 hours on a single core CPU.

14

Out of those runs, our highest scoring solution achieved a merit of J = 1177 without any re-
finements. Applying the ∆V -refinement improved σ from 1.14 to 1.52, resulting in J = 1591.
Based on the refined settlement trees, three consecutive optimization cycles were started, with one
cycle consisting of the following refinements in that order: reduction, regrow, ∆V -refinement and
padding.

After the first cycle, J increased to 1740, after the second to 1934 and after the last cycle to
1972. This score was improved further by repeating the ∆V -refinements and adding some padding,
resulting in our final solution with J = 1996, settling N = 2652 stars with an efficiency of η =
0.46778 and σ = 1.60906. Figure 9 shows this solution, which we submitted at the end of the
competition. An animation of our solution can also be found on Youtube.7

ANALYSIS OF OUR SOLUTION

Figure 10. Overlay of our best found solution at 90 Myr with a spiral of optimal efficiency.

There are several points worth noting about our solution: Coming back to the initial analysis
of the merit function, we observe that the final settlement forest indeed resembles a spiral-like
pattern. Figure 10 shows an overlay of an optimal efficiency spiral with our solution, illustrating
the (comparably) high efficiency η that our overall strategy achieved. The emergence of the spiral
pattern can be partly attributed to the geometry of the initial root nodes. Figure 6 shows how the
root nodes were established: One of the three mothers ship trajectories produces 6 settlements by
deploying the two stars one impulse strategy at each leg. The two other mother ships follow the
one star two impulse strategy, each only establishing 2 settlements, but travelling larger distances to

15

target areas of high r. The two fast ships break the continuity of the spiral pattern but still allow for
a coverage of large chunks of r and Θ regions, which is essential for high efficiency.

With respect to the settlement trees we note that the concurrent tree search is capable of growing
various different shapes, but generally avoids creating dense clusters of stars (which would be, most
likely, detrimental for η). Instead we observe that the first transfers in the settlement trees tend to
spread out over larger distances to create local branches of settlements. Moreover, the settlement
trees grow outwards, as there are more settled stars needed in the outer areas of the galaxy than in
the center. This outward growing is induced by the refinement cycles, as inward growing branches
are pruned while new transfers to outward regions are favoured.

CONCLUSIONS

In this work we analyzed the galaxy settlement challenge that was introduced as the problem
of the GTOC-X. Identifying the efficiency η as one of the major factors influencing the merit, we
designed fast ships and mother ship transfers to settle promising stars for further development.
While we did not explicitly design our algorithms to generate solutions following a spiral pattern,
our exploration of the design space converged to a settlement distribution close to an optimal spiral.
The concurrent tree search demonstrated its potential to directly optimize two of the three major
factors of the merit function and thus capturing large parts of the complexity of this challenge.
Lastly, we believe that the challenge was able to give us fascinating insights into the design of
interstellar travel and the capabilities of intelligent life to spread through our galaxy.

REFERENCES
[1] A. E. Petropoulos, E. D. Gustafson, G. J. Whiffen, and B. D. Anderson, “GTOC X: Settlers of the

Galaxy Problem Description and Summary of the Results,” Astrodynamics Specialist Conference, Port-
land, Maine, 11-15 Aug., 2019, pp. AAS 19–891.

[2] D. Izzo, “Revisiting Lamberts problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 121, No. 1,
2015, pp. 1–15.

[3] À. Jorba and M. Zou, “A software package for the numerical integration of ODEs by means of high-order
Taylor methods,” Experimental Mathematics, Vol. 14, No. 1, 2005, pp. 99–117.

[4] M. J. Powell, “A hybrid method for nonlinear equations,” Numerical methods for nonlinear algebraic
equations, 1970.

[5] D. Hennes, D. Izzo, and D. Landau, “Fast approximators for optimal low-thrust hops between main belt
asteroids,” 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016, pp. 1–7.

[6] D. Izzo, D. Hennes, L. F. Simões, and M. Märtens, “Designing complex interplanetary trajectories for
the global trajectory optimization competitions,” Space Engineering, pp. 151–176, Springer, 2016.

[7] D. Izzo, M. Märtens, E. Öztürk, M. Kisantal, K. Konstantinidis, L. F. Simões, C. H. Yam,
and J. Hernando-Ayuso, “Settling the Galaxy (ACT’s entry to GTOCX),” https://youtu.be/
nlnlORplDTI, 2019. Accessed: 2019-07-29.

16

https://youtu.be/nlnlORplDTI
https://youtu.be/nlnlORplDTI

	Introduction
	Understanding the merit function
	Designing fast ships, mother ships and settler ships
	Fast Ships
	Mother Ships
	Basic impulsive leg
	Two stars one impulse
	One star two impulses

	Settler Ships

	Estimation of number of settled stars achievable
	The Concurrent Tree Search
	Initial Conditions
	Why a Concurrent Search?
	Overview of the Algorithm
	Selecting a Star

	Topological refinements of settlement trees
	V-refinement
	Reduction
	Regrowth
	Padding

	The best solution found
	Analysis of our Solution
	Conclusions

