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GTOC X: SETTLERS OF THE GALAXY PROBLEM DESCRIPTION
AND SUMMARY OF THE RESULTS
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The Global Trajectory Optimisation Competition was inaugurated in 2005 by Dario
Izzo of the Advanced Concepts Team, European Space Agency, as a means of
fostering innovation in trajectory design and cross-fertilisation with other fields.
GTOC2 through GTOC9 were organized by the winning teams of the preceding
GTOC editions. Keeping this tradition, the Outer Planet Mission Analysis Group
and Mission Design and Navigation Section of the Jet Propulsion Laboratory orga-
nized the tenth edition of the competition, GTOC X. The futuristic problem posed
may loosely be described as a “Settlers of the Galaxy” challenge, wherein trajec-
tories must be designed for humanity to settle throughout the galaxy. After the
release of the precise problem statement, the 73 registered teams had four weeks
to work on the problem. Solutions were submitted to the competition website for
automated verification and scoring on a leaderboard. A total of 42 teams returned
solutions. In this paper we describe the GTOC X problem, and give an overview
of the solutions and their verification and ranking. Six teams presented their work
at a special GTOC X session of this Conference, including the winning team led
jointly by the National University of Defense Technology and the Xi’an Satellite
Control Center, both of China.

INTRODUCTION

The Global Trajectory Optimisation Competition was inaugurated in 2005 by Dario Izzo of the
Advanced Concepts Team, European Space Agency, as a means of fostering innovation in trajec-
tory design and cross-fertilisation with other fields.1 GTOC2 through GTOC9 were organized by
the winning teams of the preceding GTOC editions. Keeping this tradition, the Outer Planet Mis-
sion Analysis Group and Mission Design and Navigation Section of the Jet Propulsion Laboratory
organized the tenth edition of the competition, GTOC X.

The criteria for selecting, or perhaps one should say, designing, the GTOC X problem are similar
to those used in the previous competitions: Global optimization over a large design space with many
local optima; unusual objective function, or constraints — no canned methods or existing software
can likely fully solve the problem; problem is easy enough to tackle in a 3-4 week timeframe
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for experienced mission designers or mathematicians, including exploration of new algorithms;
problem solutions can be easily verified. The problem chosen this year added the dimension of
unfamiliar trajectory dynamics, and, so to speak, a much larger playing field.

In this paper, we describe first the GTOC X problem as posed to the participating teams. The
subsequent sections will describe the development of the problem, the competition logistics, and an
overview of the solutions that were submitted. The present paper, together with papers from six of
the top teams, comprised a special session on GTOC X at the conference. The winning solution was
submitted by a joint team from the National University of Defense Technology in Beijing, China,
and the Xi’an Satellite Control Center, in Xi’an, China.

THE SCENARIO

In about ten thousand years from the present, humanity will reset its counting of years to zero.
Year Zero will be the year when humanity decides the time is ripe for the human race to boldly
venture into the galaxy and settle other star systems. One hundred thousand star systems in the
galaxy have been identified as being suitable for settlement. Even in this Year Zero, although
technologies and knowledge have dramatically progressed, we are still subject to the tyranny of
inertia and remain far from the near-instantaneous space travel depicted fancifully in science fiction.
However, enormous strides have been made in the ability to live in space, so much so that self-reliant
settler vessels can travel though space for hundreds of thousands of generations, making it possible
for humans to reach and settle other star systems. The task in GTOC X is to settle as many of the
one hundred thousand star systems as possible, in as uniform a spatial distribution as possible, while
using as little propulsive velocity change as possible. The settlement of the galaxy starts by fanning
out from our home star, Sol. Once another star is settled, further settlements can fan out from that
star. Solutions that are submitted earlier rather than later in the submission period will be rewarded
a bonus stemming from the fact that humanity’s resources are dwindling and the sooner we decide
on a settlement plan for the galaxy, the better.

THE PROBLEM

The stars that are available for settlement are defined in a database file, stars.txt. They are all
in circular orbits around the galactic center; their ephemerides are described in the “Equations and
Ephemerides” section. The initial settlers from Sol depart in up to three Mother Ships and up to two
Fast Ships. All departures from Sol must occur no later than 10 Myr (10 million years) past Year
Zero. Mother Ships each carry up to 10 Settlement Pods; a Settlement Pod is released at the instant
when the Mother Ship flies by a star (i.e., matches the position of the star). The Settlement Pod’s
velocity is equal to the Mother Ship’s velocity at the instant of release, whereupon the Settlement
Pod immediately performs a maneuver to match the velocity of the star, thereby settling that star.
The Mother Ship’s velocity is unaffected by the flyby (i.e., there is no gravity assist, the star is a
massless, moving point in space). The Fast Ships can each rendezvous with a single star (i.e., match
its position and velocity), which is then considered settled. Up to three Settler Ships can depart
from each settled star, as long as at least 2 Myr have elapsed since the star became settled. Each
Settler Ship can rendezvous with a single star, which is then considered settled. Stars can only be
settled once.

The motion of the ships is subject to the central-force law described in the “Equations and
Ephemerides” section. The ships and pods execute impulsive maneuvers to control their motion,
as described in the “Propulsive Maneuvers” section. Settlements can be made up to 90 Myr past
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Year Zero. The task of the competition is to design the trajectories of these ships (i.e., a settlement
tree) to maximize the merit function described in section “Merit Function”.

Equations and Ephemerides

A central-force law governs the motion of both the stars and the ships. The ephemerides of the
stars are available analytically because they are assumed to follow circular orbits. The central-force
law assumed for the competition approximately models the circular motion observed for actual stars
in our Milky Way. Specifically, the circular orbit speed, vc, for a body at radius r from the galactic
center, and the acceleration, f , directed towards the galactic center are

vc(r) =
1

k8r8 + k7r7 + k6r6 + k5r5 + k4r4 + k3r3 + k2r2 + k1r + k0
(1)

f(r) =
v2c
r

(2)

where the ki (i = 0, . . . , 8) are constants defined in the “Constants and Conversions” section. The
Cartesian position coordinates of any body (x, y, z) obey the differential equations with respect to
time, t:

d2x

dt2
= −x

r
f(r) (3)

d2y

dt2
= −y

r
f(r) (4)

d2z

dt2
= −z

r
f(r) (5)

where r =
√
x2 + y2 + z2.

The motion of the stars also obeys these differential equations, but, due to their orbits being
circular, the motion can be expressed analytically and so the following equations should be used to
determine position and velocity for the stars as a function of time past Year Zero, t:

n ≡ vc(R)/R (6)

x = R[cos(nt+ φ) cos Ω− sin(nt+ φ) cos i sin Ω] (7)

y = R[cos(nt+ φ) sin Ω + sin(nt+ φ) cos i cos Ω] (8)

z = R[sin(nt+ φ) sin i] (9)

vx = vc(R)[− sin(nt+ φ) cos Ω− cos(nt+ φ) cos i sin Ω] (10)

vy = vc(R)[− sin(nt+ φ) sin Ω + cos(nt+ φ) cos i cos Ω] (11)

vz = vc(R)[cos(nt+ φ) sin i] (12)

where the values ofR, i,Ω, φ for each star are specified in a provided ASCII data file, stars.txt,
which has one header line followed by one line for each star, including Sol. Stars are assigned
integer identifiers (IDs) in the file, starting with 0 for Sol and progressing to 100,000. The final
column in the file, given for convenience, is the final polar angle of the star which is a derived
quantity: θf = atan2(y(tf ), x(tf )), tf = 90 Myr. It should be noted that we are following
common galactic conventions: We take the +z direction as the Galactic North direction and so the
stars are orbiting in a retrograde direction around this axis (clockwise when looking down on the
galaxy from Galactic North); that is why, for the above equations, the inclinations, i, listed in the
file approach 180 degrees.
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Propulsive Maneuvers

Propulsive maneuvers are impulsive, meaning that the velocity of the ship (or pod) changes in-
stantaneously when the impulse is applied. The magnitude of the change in velocity due to an
impulse is denoted ‘∆V ’. The limits on the magnitude and number of ∆V s are listed in Table 1.

In addition, there is a timing constraint on the maneuvers. For a given ship, consecutive maneu-
vers must be spaced at least 1 Myr apart in time. A Settlement Pod’s rendezvous impulse must also
be separated by at least 1 Myr from any impulses performed by the Mother Ship or by any other
Settlement Pod from the same Mother Ship. Figure 1 provides a schematic view of a settlement tree
starting from Sol.

Table 1. Propulsive Maneuver Limits

Type of vessel Available Number of Impulses Maximum single impulse Maximum Total ∆V

Mother Ship 3 200 km/s 500 km/s
Settlement Pod 1 300 km/s 300 km/s

Fast Ship 2 1500 km/s 1500 km/s
Settler Ship 5 175 km/s 400 km/s

Other Constraints and Tolerances

Ships must not venture closer than 2 kpc to the galactic center, nor further than 32 kpc:

2 kpc ≤ r(t) ≤ 32 kpc, ∀t (13)

Upon submission via the competition website, solutions will be checked against our independent
propagations generated from the submitted data. Solutions will have to meet the following toler-
ances to be considered valid:

• Violation of limits on magnitudes of individual ∆V s and Total ∆V per vessel: 0.01 km/s.

• Error in magnitude of arrival impulse: 0.01 km/s.

• Violation of maneuver timing limits and 90 Myr time limit: 1 yr.

• Error in position of vessel with respect to star at rendezvous epoch: 10−4 kpc.

• Violation of range limits (Eq. 13): 0.01 kpc.

Merit Function

We define first a number of auxiliary equations. Let N be the number of settled stars. Sol does
not count as a settled star. First we define the function f of a variable x and parameters µ, s:

f(x ; µ, s) =

{
0, |x− µ| ≥ s
1
s −

|x−µ|
s2

, otherwise.
(14)
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Figure 1. Schematic of a settlement tree fanning out from Sol. Only some impulses
are shown: Three for one of the Mother Ships, two for one of the Fast Ships, one for a
Settlement Pod, two for one Settler Ship, and five for another Settler Ship.

For the radial and angular coordinates, we then define:

fr(r) =
1

N

N∑
i=1

f(r ; ri, sr) (15)

fθ(θ) =
1

N

N∑
i=1

f(θ ; θi, sθ) (16)

where sr = 1.0 kpc, sθ = 2π/32 rad, ri is the orbital radius of the ith settled star, and θi is the
final polar angle, θf , of the ith settled star (as given in the stars.txt file).

Additionally, with Rmin = 2 kpc and Rmax = 32 kpc, we define the goal functions and parame-
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ters:

gr(r) = α(r)
2r

R2
max −R2

min
(17)

gθ(θ) = β(θ)
1

2π
(18)

Rk = k + 2 kpc, 0 ≤ k ≤ 30 (19)

Θk = −π + 2π
k

32
rad, 0 ≤ k ≤ 32 (20)

where the scaling functions α and β are

α(r) =


0.5833, r = 2 kpc

0.4948, r = 32 kpc

1, otherwise.

(21)

β(θ) =


0.5, θ = −π rad

0.5, θ = π rad

1, otherwise.

(22)

The following error functions can then be defined:

Er =
30∑
k=0

(
fr(Rk)

gr(Rk)
− 1

)2

(23)

Eθ =
32∑
k=0

(
fθ(Θk)

gθ(Θk)
− 1

)2

(24)

A bonus factor for submitting a solution early is also defined as:

B = 1 +

(
tend − tsubmission
tend − tstart

)4

, (25)

where tstart and tend are the start and end epochs of the GTOC X solution submission timeframe,
and tsubmission is the epoch at which the solution file is submitted and received at the GTOC X
website. The start and end epochs were May 21, 2019, 8p.m. UTC, and June 12, 2019, 8 p.m. UTC.

Finally, the merit function, J , to be maximized is the following:

J = B

(
N

1 + 10−4 ·N(Er + Eθ)

)(
∆Vmax

∆Vused

)
, (26)

where ∆Vused is the total ∆V used in the settlement tree (the sum of all impulses performed by
each ship and pod) and ∆Vmax is maximum ∆V permitted, obtained by summing each vessel’s
Maximum Total ∆V shown in Table 1. Should there be a tie to five significant figures in J , the tree
with larger N will win. Should there still be a tie, the solution with the smaller ∆Vused will win.

Constants and Conversions

The values for the necessary constants and unit conversions are shown in Table 2. Two of the less
customary units used, at least in the field of spacecraft trajectory design, are Myr (million years)
and kpc (kiloparsecs).
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Table 2. Constants and unit conversions

Constant Value Units

k8 -1.94316e-12 (km/s)
−1
/kpc8

k7 3.7516e-10 (km/s)
−1
/kpc7

k6 -2.70559e-08 (km/s)
−1
/kpc6

k5 9.70521e-07 (km/s)
−1
/kpc5

k4 -1.88428e-05 (km/s)
−1
/kpc4

k3 0.000198502 (km/s)
−1
/kpc3

k2 -0.0010625 (km/s)
−1
/kpc2

k1 0.0023821 (km/s)
−1
/kpc

k0 0.00287729 (km/s)
−1

1 kpc 30856775814671900 km
1 Myr 106 yr
1 yr 31557600 s

PROBLEM DEVELOPMENT

While searching for unfamiliar trajectory dynamics on which to base GTOC X, we simultane-
ously sought a problem that would particularly captivate the imagination, especially since this is the
tenth GTOC, the first double-digit GTOC in our customary base-10 counting. Many aspects of the
chosen problem are of course contrived, however, one aspect in particular is based on well-studied
physics, namely the galactic rotation curve. Galactic dynamics have many intricacies,2 but one fun-
damental feature of spiral galaxies is that the rotation curve is more or less flat, i.e., the bulk of stars
in the galaxy move at roughly the same speed around the galactic center (to within ten or twenty
percent). From the rotation curve, in turn, can be inferred a central-force law, to which any intra-
galactic spacecraft would also be subject. The next sections will describe how a rotation curve was
selected for the Milky Way, how an initial set of stars was assembled, and how the merit function
and constraints for the problem were developed.

ROTATION CURVE OF THE MILKY WAY

Even with recent unprecedented advances in our knowledge of the structure of our own galaxy,3–7

there is still considerable uncertainty in the rotation curve of the Milky Way. The rotation curve
defined by Eq. 1 was developed by fitting the circular velocity data presented in Bhattacharjee et
al.,5 specifically Table 2 therein which includes uncertainty estimates on the velocity. An inverse
polynomial fit was chosen for its simplicity and ability to fit the data using a relatively low order.
The fit was restricted to cover the range from 2-32 kpc, roughly double the radius of the visible disk
of the Milky Way, and excluding the galactic center. As shown in Fig. 2, a number of points are
excluded from the fit, and three artificial points are added to help shape the fit more easily.

ASSEMBLING THE SET OF SETTLEABLE STARS

The choice to use an artificial galaxy

When choosing the galactic playing field for GTOC X, we would have ideally used the actual
positions of the stars in our own Milky Way galaxy as obtained from the Gaia mission.3, 6, 7 However,
the star catalogs available have large uncertainties for the radial distance from Earth for many of the
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Figure 2. Fit of the rotation curve for the Milky Way.

stars.8 This is an inherent limitation of the parallax method of measuring star distance as the Earth
orbits the Sun. The maximum baseline of approximately 1 AU sets a hard limit on one parameter that
can improve the radial distance measurement resolution. The remaining parameter for improving the
measurement is to increase the resolution of angular measurements, which is a difficult engineering
problem. Since this limits our capabilities of reproducing a 3D representation of the stars in our
galaxy, we chose to use an artificial galaxy for the competition. The final set of stars is the result of
combining an N-body numerical simulation with statistical sampling. The following sections will
cover the details.

Initial, realistic galaxy: N-body simulation

We chose to use a galaxy with 1×105 stars for the competition. However, we opted to use 5×105

particles for the numerical simulations, as we found this produced more realistic structures when
propagated. The initial conditions for the simulations were relatively uniform, but the evolution of
the stars within the dynamical model of gravity produces more interesting distributions similar to
those of observed galaxies. Once a fitting spiral-arm galaxy distribution was achieved, the states
of the stars were used for the next step in producing the GTOC X initial galaxy state. The initial
positions of the stars were randomly sampled in a cylindrical volume with an elliptical cross-section.
The height of the cylinder was fixed to 12 kly and its major axis was fixed to 120 kly. We chose
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this size since an initial particle cluster of this size evolved into a galaxy roughly the same size as
the Milky Way. When fitting the rotation curve of the Milky Way, as described above, we used 32
kpc (≈104 kly) to represent the edge of the Milky Way, and a recent study by Watkins et al. to
estimate its total mass used 39.5 kpc as the outer limit.9 The flattening of the sampling volume
cross section was varied to generate different data sets, and the value selected for the final data set
was f = 0.3. We chose this value since it resulted in a spiral galaxy with two arms and a central
bulge at the core. Additionally, the initial transverse velocity of each particle was chosen in order
to achieve a fixed angular velocity, parallel to the xy-plane and perpendicular to the radius vector.
Each simulation had a fixed value of the initial angular velocity, and we varied it in the following
range for the various simulations:

Vt,i = ω|~ri|, 4.0× 10−17rad/s ≤ ω ≤ 7.0× 10−17rad/s (27)

A clockwise rotation of the galaxy was desired, and thus the direction of the tangential component
was chosen to be clockwise as well. The initial velocity components in the radial and out-of-plane
directions were set to zero. We chose this range of angular velocities since it was a set that in general
prevented the galaxy from expanding too much or indefinitely as it evolved. The final data set used
ω = 6.7× 10−17 rad/s.

An all-pairs propagation for an N-body problem using Newton’s universal law of gravitation has
the familiar computational complexity of O(n2). Since we were computing galaxies of order 105

stars, this was counter-productive, so we opted to use an approximate, but more efficient algorithm.
For this purpose, we chose the Barnes-Hut N-body algorithm, see Barnes and Hut.10 When comput-
ing the force on a particle due to the (n − 1) other particles, this algorithm approximates a distant
cluster of attracting bodies as a point mass at the cluster’s center of mass with the combined mass
of the cluster. The more distant the cluster is, the larger the volume in which all bodies are approx-
imated as a single point mass becomes. The forces due to nearby particles are explicitly computed
without approximation. This algorithm reduces an N-body simulation to complexity O(n log(n)).
In particular, we used the algorithm as implemented by Mateus Zitelli.11 The Barnes-Hut algorithm
solidifies the force law, and for the propagation we used a fixed step Euler method. The time step
used for the propagation was dt = 5 × 1013s ≈ 1.584Myr. We used a combination of two simu-
lated data sets as inputs to the refinement step in the next section. These two data sets are in fact
two instantaneous galaxy states taken from the same simulation at t = 400dt ≈ 633.8Myr and
t = 1200dt ≈ 1901.3Myr. These sets were chosen such that four spiral arms would be present in
the galaxy.

Creating a better playing field: hybrid of simulations and random samples

One of the intentions of the problem was to encourage teams to settle the galaxy in a somewhat
distributed manner, achieving something like a settlement density that is constant per unit area. This
sort of distribution has settlement density proportional to r2, which is dramatically at odds with real
galactic star densities. So, to ensure the hope of distributed settlements didn’t conflict too strongly
with the actual distribution of available stars, we used a hybrid approach which combined stars from
realistic N-body simulations with stars simply drawn from the desired distribution. The simulated
stars were chosen from two runs containing two prominent spiral arms each. The stars from these
simulations were combined to provide a data set with four spiral arms. From the raw sets of star
simulations, several modifications were made. First, the stars with the largest 1% of radius were
treated as outliers and removed. Next, the radii of all stars was scaled to be at a maximum of 32
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kpc. After that scaling, all stars with radius less than 2 kpc were removed. Finally, all stars with
inclination less than 100◦ were removed.

For the randomly selected stars, radius values were chosen by

r =
√

22 + (322 − 22)z, (28)

where z is a uniform random variable on the range [0, 1]. This yields radius values with density
proporational to r2 as required for an equal-area distribution. The inclination was chosen randomly,
but limited such that the maximum out-of-plane position component would be less than 5 kpc. The
other angular elements were chosen uniformly randomly in [0, 2π].

In the end, the published set of stars consisted of 80,000 stars from the N-body simulations and
20,000 randomly selected stars. The star positions are depicted in Figs. 3 and 4.

DEVELOPING THE MERIT FUNCTION

The development of the merit function started with a brainstorming session where many possible
approaches were discussed. An initial topic was even just which aspects of the settlement problem
should be scored, such as wall-clock time, propellant usage, uniformity of settlement distribution,
etc.

Most of the focus was on how to efficiently score the uniformity of settlement. Initial thinking was
that a covariance-based approach would be the most effective. After all, it is easy to compute and has
the feature that maximizing the covariance tends to spread out settlements. However, maximization
of covariances tends to push solution to the boundaries of the problems, neglecting the interior
space. Approaches such as discrete binning were considered, but suffer from numerical tolerance
issues where slight perturbations can cause a merit function to change disproportionately to the
solution.

Eventually, we settled on an approach based on probability distribution functions (PDFs). In
short, the radial and angular components of a settlement’s position were scored on how well they
matched a distribution that is evenly spread over area. Given the minimum and maximum allowable
radii for the problem (Rmin and Rmax), this gives a radial PDF of

pr(r) =
2r

R2
max −R2

min
. (29)

Note that the area of gr(r) between Rmin and Rmax is one, as required by a valid PDF. The angular
component is a simpler uniform distribution:

pθ(θ) =
1

2π
. (30)

Once the goal PDFs are defined, the next consideration is how to construct a PDF from the
settlements, given that they are discrete values. The idea was to build the PDF from a combination
of basis functions. Each basis function is its own PDF, with the peak value at the settlement value,
and tapering to zero for nearby points. The triangular distribution was chosen for its simplicity and
finite support. This avoids any drawbacks of discrete binning. The main drawback of this approach
is that for points that adhere to the desired distribution, the basis functions don’t combine exactly
to reproduce the goal pdf at the boundary points. This is the reason for the α and β coefficients
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in the problem statement gr() and gθ() functions. For the radial functions, defining F (x) as the
Cumulative Distribution Function (CDF) of the basis function’s PDF, the value of the PDF in the
limit of many infinitesimally spaced settlements following the goal distribution, we have the value
of the combined basis function as any point x:

fx(x) =
2

R2
max −R2

min
x [F (Rmax − x)− F (Rmin − x)] + (31)

2

R2
max −R2

min

{
[z · F (z)]Rmax−x

Rmin−x −
∫ Rmax−x

Rmin−x
F (z)dz

}
. (32)

For the angular component, things simplify because the goal distribution has zero slope:

fx(x) =
1

2π
[F (2π − x)− F (−x)] (33)

These seemingly complicated formulas only really matter at the endpoints. At all interior points, the
PDF obtained as the combination of basis functions is identical to the goal PDF. The values of α and
β given in the problem description are these functions evaluated at the endpoint values. Again, the
point of this correction is to account for boundary effects introduced by the use of basis functions.

The number of stars settled, N , should also logically play a role in the merit function. Larger
N should be rewarded, as long as it does not come at the expense of poorer spatial distributions.
To this end, the ratio shown in the merit function (Eq. 26) is used, with a weighting factor of 10−4

to relate N to the spatial distribution (error) terms, so that J is not too sensitive either to N or to
(Er + Eθ).

Of course, ∆V consumption is a traditional mission design metric, and so it is also included in
the merit function, but as a somewhat unusual ratio of ∆V available to ∆V used. This ratio, has the
potential to be a very strong lever in advancing the merit function.

The final component of the merit function is the time bonus factor, B. The value of B drops from
two to one in proportion to the fourth power of the time elapsed since the opening of the submission
period. The purpose of the time bonus was to encourage teams to submit solutions earlier so that
the leaderboard would contribute to an active and robust competition.

RESULTS

A total of 42 teams submitted solutions throughout the competition timeframe via the competition
website.12 Solutions were automatically checked on the web server. Verified solutions were ranked
on a public, real-time leaderboard if they improved upon a team’s earlier solution. The final results
of the top 25 teams are presented in Table 3. The full leaderboard and other details of the competition
may be found on the competition website.

Early on, a number of teams exploited the ∆V ratio and the time bonus, quickly finding one or
a handful of very-low-∆V transfers, especially with Fast Ships. The maximum value of J which
could thus be obtained for what we called “low-N” solutions is on the order of 380-400. This was
dubbed the ”error barrier” because the only way to break past these values for J would be to reduce
the error terms, which in turn is predicated on settling much more than just a handful of stars. The
error barrier was broken about a day after the first low-N solutions were being returned. Plots of
the top fourteen solutions are shown in Figs. 5 and 6; the Sun is in green, stars settled by Fast Ships
are in magenta, by Settlement Pods in blue, and by Settler Ships in orange.
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Table 3. Final results of the top 25 teams

Rank Team Name N ∆Vused (km/s) ∆Vmax (km/s) J

1 NUDT&XSCC 3798 0.812701E+06 0.152170E+07 3101.14604
2 Tsinghua LAD - XINGYI 2806 0.624757E+06 0.112500E+07 2070.53723
3 ESA-ACT 2652 0.660946E+06 0.106350E+07 1996.11072
4 The Aerospace Corp. 2435 0.769120E+06 0.976800E+06 1559.28104
5 HIT BACC 2855 0.714294E+06 0.114520E+07 1167.423
6 CSU 1246 0.181974E+06 0.501200E+06 1111.00887
7 Sapienza-PoliTo 1013 0.271417E+06 0.408200E+06 946.450958
8 worhp2orb 3235 0.107048E+07 0.129620E+07 873.309569
9 1-2-B-#1 1863 0.403540E+06 0.748100E+06 802.932024

10 Team Kataskopoi 1352 0.426588E+06 0.543800E+06 597.045676
11 NASA GRC 1021 0.232315E+06 0.411500E+06 544.445771
12 Team Jena 5 0.617327E+02 0.540000E+04 368.847689
13 NASA LaRC 754 0.231610E+06 0.303500E+06 360.787798
14 NUDT-G301 1347 0.413174E+06 0.541500E+06 360.736571
15 NASA MSFC 2 0.239954E+02 0.300000E+04 330.407412
16 UMich 3 0.441739E+02 0.380000E+04 321.192929
17 CU Boulder 5 0.778346E+02 0.540000E+04 307.313235
18 TM 494 0.630813E+05 0.200400E+06 297.958738
19 NUAA-ASTL 5 0.767176E+02 0.540000E+04 277.570699
20 IRSIBJ 5 0.642709E+02 0.540000E+04 268.040151
21 KAIST 2 0.226858E+02 0.300000E+04 242.605091
22 Team BIT 758 0.230746E+06 0.306600E+06 237.9109
23 Team Rocket 1 0.937812E+01 0.150000E+04 207.829574
24 Toso & Herrera 5 0.630259E+02 0.540000E+04 203.648553
25 MSU-RAS-RUDN 968 0.180743E+06 0.390000E+06 201.583171

The largest number of Settlement Pods dropped off by a single Mother Ship was 6; a number
of teams submitted such solutions, including several in the top 14, one of which, the NASA LaRC
solution, had all three Mother Ships dropping off 6 Pods.

Amongst the top 25 teams, all 9 that had low-N solutions settled star 51919, either with a Settle-
ment Pod or a Fast Ship. Seven of those nine settled star 96507, and 5 settled 87651. None of the
leaderboard solutions that broke the error barrier settled any of those three stars.

All teams that broke the error barrier settled 1021 or more stars. The significance of this number
is that it is the minimum number of stars that would be needed to drive Er to zero even under
the assumption that the radius for each star could be freely specified (not drawn from the given
set of stars). The Eθ term can be made very small with much fewer stars. Interestingly, the final
leaderboard had a solution with 1021 stars.

CONCLUSION

The tenth Global Trajectory Optimisation Competition, GTOC X, saw wide participation from
teams around the world, just edging out the level of participation seen in GTOC9, and almost twice
the participation of previous GTOCs. The breaking of the error barrier was a complex endeavor, and
was accomplished by eleven teams. The merit function and constraints made this a multi-faceted
problem, which gave teams many avenues to explore. The spatial distribution objective was perhaps
the most foreign and most difficult to tackle. We trust that the methods developed for optimizing the
spatial distribution will bear fruit in related areas of traditional mission design. We also hope that
this unconventional problem was a good vehicle to look at the methods of trajectory optimization
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anew, to inspire young mission designers, and to foster collaborations between mission designers
and the broader optimization community. The winners of GTOC X, the joint NUDT & XSCC team,
have graciously taken on the mantle of hosting the next GTOC, tentatively planned for 2021.
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Figure 3. Distribution of stars in the galaxy at t = 0. Sun is in green.
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Figure 4. Distribution of stars in the galaxy at t = 90 Myr. Sun is in green.
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Figure 5. Top 8 solutions: Positions of settled stars at t=90 Myr.
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Figure 6. Rank 9-14 solutions: Positions of settled stars at t=90 Myr.
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