
 1

 GTOC X: Results and Methods of National University of Defense

Technology and Xi’an Satellite Control Center

Ya-Zhong Luo,1* Hong-Xin Shen,1† An-Yi Huang,‡ Tian-Jiao Zhang,§

Yue-He Zhu,** Zhao Li,§ Peng Shu,** Zhen-Jiang Sun,** Jian-Hui Li,§

Zhen-Yu Li,†† Jian-Jun Shi,†† Bing Yan,†† Xiang-Nan Du,†† Zhen Yang ‡‡

This paper describes the methods used and the results obtained by team

NUDT&XSCC (a collaboration team between National University of Defense

Technology and Xi’an Satellite Control Center) for the 10th edition of the Glob-

al Trajectory Optimization Competition. The resulting trajectory won the 1st

place in the competition, achieving a final mission value of J = 3101.15. The

methods used by our team are described. These methods mainly include star-

targeting technique, allowing one to flyby 2 to 3 stars using a single impulse or

two impulses; targets layout optimization technique, enabling one to select the

targets to get optimal spatial distribution based on the insights into the ideal con-

figuration; ant colony optimization, permitting one to construct feasible settle-

ment trees for the selected optimal targets.

I. INTRODUCTION

The 10th global trajectory optimization competition (GTOC X) problem is the settlement of the

galaxy. This was accomplished by three mother ships and two fast ships flying around the galac-

tic center. The goal was to settle as many of the one hundred thousand star systems as possible, in

as uniform a spatial distribution as possible, while using as little propulsive velocity change as

possible. A performance index, which depended on the number of targets, the distribution of the

targets, the ΔV ratio, must be maximized subject to a variety of constraints. Propulsive maneuvers

are impulsive, with ΔVs magnitude and number limits; the tour should last less than 90 Myr (mil-

lion years) in a 10 Myr launch window. The detail mathematical formalization can be read in the

work written by the competition organizers1.

Since the problem proposed by JPL is quite complex, embedding a rationale in the problem is

preferable to our team (Team7), so that an adequate mission (i.e., a high-score solution for the

competition) can be devised without exploiting any “standard” global optimization technique.

The complexities of this problem are to manage starting settlement targets set and select suitable

1These authors contributed equally to this work.
*Professor, National University of Defense Technology, 410073, Changsha, China. luoyz@nudt.edu.cn
†Assistant Professor, Xi’an Satellite Control Center, 710043, Xi’an, China. hongxin.shen@gmail.com.
‡Ph.D. Candidate, National University of Defense Technology; Aerospace Engineer, Xi’an Satellite Control Center.
§Aerospace Engineer, Xi’an Satellite Control Center.
**Ph.D. Candidate, National University of Defense Technology.
††Graduate Student, National University of Defense Technology.
‡‡Assistant Professor, National University of Defense Technology.

AAS 19-899

 2

followed targets to rendezvous. The basic idea of team7 consists in the exploration of stars per-

formed by keeping the settlement routine moving as close as a square spiral with respect to the

galactic center. Besides, the targets are sought globally in the optimal spatial distribution before

their rendezvous sequence is generated.

Trajectory design is conceptually split in four parts as follows. First, a number of multiple im-

pulsive trajectories for mother ship are generated to provide databases of settlement pods by

means of differential evolution (DE)2. Generally, it is not difficult to obtain two Pods release

through one impulse of shooting, but only one/zero Pod is released in order to make the mother

ship go further as fast as possible. Second, suitable rendezvous targets are selected in the reacha-

ble region of each Pod and fast ship using generic algorithm, and the rendezvous targets are con-

nected to build up to 14 settlement trees using ant colony optimization (ACO)3-4. Actually, this

step only concerns the ideal spatial distribution (or the error functions to be minimized) rather

than the real performance index. Third, the settlement trees built by ACO is re-adjusted by replac-

ing, deleting, and adding each node, as long as the performance index could be improved the

most. Finally, the arrival time of each star in the resulting settlement trees are re-optimized using

SNOPT5 as well as DE as a preprocessing technique.

II. APPROXIMATE AND ACCURATE SOLVER FOR THE BVP
This problem introduces a totally new dynamics. The current conclusions on the motion of a

ship or a star in general two-body systems are not available any more. Therefore, the initial and

boundary value problems should be dealt with carefully.

An efficient boundary value problem solver is necessary for the whole solution design. In

many cases, given transfer time of any pair of bodies, the corresponding velocity increments need

to be rapidly estimated. For this purpose, a linear approximation is presented for the boundary

value problem.

It is found that the orbital period of a star is usually over 100 Myr in this problem. While

transfer trajectory usually lasts for only a few number of Myr, which is much shorter than the or-

bital period. That is to say, the transfer trajectory can be simply approximated as a straight line.

Assume that the initial position and velocity vectors
1r and

1v of a ship at time
1t are known, a

ship is transferred to state
2r and

2v at time
2t , by means of two impulses

1v and
2v . Suppose

the transfer trajectory is a straight line, then the velocity of ship along the line should be constant,

which equals

 12

2 1

t
t t






r r
v (1)

The two impulses can be calculated as

 1 1

2 2

t

t

 






 

v v v

v v v
 (2)

The approximated solution based on linear model could provide good initial guess for accurate

solving of BVP. The relative error between approximated solution and accurate solution is often

around 10%, thus the approximate solution guarantees fast convergence of accurate optimization.

For accurate optimization, an integrator DE/STEP/INTRP described in the book of Shampine

and Gordon 6 was used for propagating the dynamics. To solve the shooting function, Minpack-17,

a package of FORTRAN subprograms for the numerical solution of systems of nonlinear equa-

tions and nonlinear least-squares problems, is used.

 3

According to the limits, the Fast Ship’s impulses is less than 1500 km/s. They could be ap-

plied in twice, each shouldn’t be more than 1500 km/s. Then we calculated the shortest time con-

tour to arrive those stars by Fast Ship, which is shown in Figure 1(a).

A Mother Ship can applies 3 impulses at most, each of which is less than 200 km/s. In consid-

er of the Mother Ships should arrive targets as soon as possible, we suppose that the first two im-

pulses are applied in the first two Myr after they leave from Sol. The Settlement Pod released

from Mother Ships has an impulse no more than 300 km/s. In order to analyze the reachable re-

gions, we simplified the first two impulses of the Mother Ship as one. Thus it was assumed to

apply two impulses, the first one is less than 400 km/s and the second is less than 300 km/s. Then,

with the same way of the Mother Ships, we get the shortest arrive time contour of every star,

shown in Figure 1(b).

(a) Fast ship (b) Mother ship

Figure 1. The minimum arrival time of the fast ships and mother ships.

III. FLYBY TRAJECTORIES FOR THE MOTHERSHIPS
The flyby trajectories for the mother ships can be composed of many types because a total of

three impulses is available. For convenience, a three-number code is used to represent the type of

flyby trajectories. For example, “111” means that each impulse aims at a star and “022” denotes

that the second and the third impulses each aim at two stars, respectively. Flying by a star using

one impulse is easy because the flyby trajectory can be directly obtained by solving a two-point

boundary-value problem. In the following part, we mainly introduce the approach to simultane-

ously fly by two stars using one impulse and the approach to simultaneously fly by three stars

using two impulses.

A. Approach to Fly by Multiple Stars

The core idea of the approach to fly by multiple stars is summarized as “Shoot-

ing+Optimizing”. Algorithm 1 presents the approach to simultaneously fly by two stars using one

impulse, where step 1 to 5 are the procedure of “Shooting” and step 6 and 7 are that of “Optimiz-

ing”. Figure 2 illustrates the flight trajectories of “Shooting” and “Optimizing”. Essentially,

“Shooting” is used to find two candidate flyby stars and “Optimizing” is used to transform a piece

rendezvous trajectory to the corresponding flyby one by gradually reducing the middle impulse

(
3

V) to 0. Note that “Shooting” may be implemented many times before “Optimizing”. The op-

timization model to obtain two-star flyby trajectory is presented in part B. Once the objective is

converged to 0 and all the constraints are satisfied, a piece of feasible two-star flyby trajectory is

achieved.

 4

Algorithm 1 The flow to simultaneously fly by two stars using one impulse

1: Randomly given a sliding time
1T , and propagate the mothership from

0 0(,)r v to
1 1(,)r v

2: Randomly given an impulse
1V and a transfer time

2T , and propagate the mothership from

1 1(,)r v to
2 2(,)r v

3: Collect the stars that are able to cross the trajectory during
2T , set 0N 

4: for 1 : M (number of the collected stars)

Calculate the minimal distance
mind between the mothership and the star

if
min 0.1 d rpc

 Put the star into the candidate pool, 1N N 

end if

 end for

5: if 2N 

 Return to step 1

 else

 Randomly select two stars from the candidate pool as the flyby stars

 end if

6: Optimizing the rendezvous trajectory from
0 0(,)r v to Star 1 and Star 2 based on the two-star

flyby optimization model

7: if 3

2 10V   && all the constraints are satisfied

 Successfully fly by two stars using one impulse

 else

 Return to step 1

 end if

Initial

State

1V

1T
0 0(,)r v

1 1(,)r v

Flyby

Star 1

Flyby

Star 2

2 2(,)r v

2T

Initial

State

0 0(,)r v

Flyby

Star 1

Flyby

Star 2

1dt

2dt

3dt

1V

2V
3V

(a) Shooting (b) Optimizing
Determining two flyby stars

4V

Figure 2. Approach to simultaneously fly by two stars using one impulse.

The approach to simultaneously fly by three stars using two impulses is similar to the one to

fly by two stars. The flow and the flight trajectory are presented in Algorithm 2 and Figure 3, re-

spectively. Two impulses are required in this case because using only one impulse cannot guaran-

tee to simultaneously fly by three stars in our test. The optimization model to obtain three-star

flyby trajectory is presented in part C. The three-star flyby trajectory can be feasible only when

the middle impulses
4

V and
6

V both reduce to 0 with all the constraints satisfied.

Algorithm 2 The flow to simultaneously fly by three stars using two impulses

 5

1: Randomly given a sliding time
1T , and propagate the mothership from

0 0(,)r v to
1 1(,)r v

2: Randomly given an impulse
1V and a transfer time

2T , and propagate the mothership from

1 1(,)r v to
2 2(,)r v

3: Randomly given an impulse
2V and a transfer time

3T , and propagate the mothership from

2 2(,)r v to
3 3(,)r v

4: Collect the stars that are able to cross the trajectory during
3T , set 0N 

5: for 1 : M (number of the collected stars)

Calculate the minimal distance
mind between the mothership and the star

if
min 0.1 d rpc

 Put the star into the candidate pool, 1N N 

end if

 end for

6: if 3N 

 Return to step 1

 else

 Randomly select three stars from the candidate pool as the flyby stars

 end if

7: Optimizing the rendezvous trajectory from
0 0(,)r v to Star 1, Star 2 and Star 3 based on the

three-star flyby optimization model

8: if 3

3 4+ 10V V    && all the constraints are satisfied

 Successfully fly by three stars using two impulses

 else

 Return to step 1

 end if

Initial

State

1T
0 0(,)r v

1 1(,)r v

Flyby

Star 2

Flyby

Star 3

2 2(,)r v
2T

Initial

State

0 0(,)r v

Flyby

Star 1

Flyby

Star 2

1dt
2dt

3dt

1V
2V

3V

(a) Shooting (b) Optimizing
Determining three flyby stars

3 3(,)r v

Flyby

Star 1

1V
2V

3T

Flyby

Star 3

4dt

5dt

4V
5V

6V
7V

Figure 3. Approach to simultaneously fly by three stars using two impulses.

B. Two-Star Flyby Optimization Model

1) Design variables

There are three design variables in the two-star flyby optimization model 1 2 3[, ,]dt dt dtD ,

where 1dt is the sliding time, 2dt is the transfer time from the first impulse to Star 1 and 3dt is the

transfer time from Star 1 to Star 2.

2) Objective function

 6

The objective is to minimize the velocity increment of
3V ,

3min J = V (3)

3) Constraints

The velocity increments of
1V ,

2V and
4V should be no larger than their maximal values

1

2

4

200 km/s,

300 km/s,

300 km/s

  

 


 

V

V

V

 (4)

C. Three-Star Flyby Optimization Model

1) Design variables

There are eight design variables in the three-star flyby optimization model

1 2 3 4 5 1 1 1[, , , , , , ,]x y zdt dt dt dt dt V V V   D (5)

where
1dt is the sliding time,

2dt is the transfer time from the first impulse to the second impulse,

3dt is the transfer time from the second impulse to Star 1,
4dt is the transfer time from Star 1 to

Star 2 and
5dt the transfer time from Star 2 to Star 3.

1 1 1, ,x y zV V V   are three components of
1V .

2) Objective function

The objective is to minimize the total velocity increment of
4V and

6V

4 6min + J  = V V (6)

3) Constraints

The velocity increments of
1V ,

2V ,
3V ,

5V and
7V should be no larger than their maxi-

mal values

1

2

3

5

7

200 km/s,

200 km/s,

300 km/s,

300 km/s,

 300 km/s

  

 


 


 

  

V

V

V

V

V

 (7)

D. Database Generation

Based on the two-star flyby and three-star flyby approaches introduced above, many types of

flyby trajectories can be generated. However, these approaches can only achieve partial flyby tra-

jectory of a mother ship. Running the approach multiple times is necessary to achieve a complete

piece of flyby trajectory. For example, we need to repeat the procedure of flying by two stars

three times to achieve a piece of “222” flyby trajectory and implement both the procedures of

flying by two stars and that of flying by three stars to achieve a piece of “032” flyby trajectory.

The optimization for achieving each partial flyby trajectory is implemented by an improved DE

algorithm. Parallel computing is applied for generating the database. Based on “Tianhe” super-

computer (about 4000 available cores), millions of pieces of flyby trajectories were achieved dur-

ing the competition, including “222”, “032”, “122”, “022” and “012” flyby trajectories.

Note that the first impulse in “022” and “012” flyby trajectories does not aim at any star, but

only to combine with the second impulse to provide larger escaping velocity for the mother ship.

The time interval between the first and second impulses is set to 1 million year constantly. “022”

and “012” flyby trajectories are considered because the mother ship is expected to fly by higher-

 7

orbit stars (i.e. the star with bigger cycling radius) with earlier arriving time, thereby saving more

time to settle higher orbit stars.

IV. CONFIGURATION OPTIMIZATION
At the early stage of the competition, we constrained the range of settle ships to follow a spe-

cial spiral line. This method helped us to get a score over 400 with only six starting ships. Then

we tried to find the ideal configuration, described by formula *()f r  . From the merit function,

it’s clear that both the axial and tangential distribution of settled stars should be uniform. In addi-

tion, density of stars in each ring [r, r+dr] is equal to density in each sector of dθ. Thus we can

find a formula as follows:

     
2 2 2 2

max min

d
d

2
r r r r r


  


    (8)

which results a formula as

 2 *

2 2

max min

2
()

()
r c f r

r r


   


 (9)

where
max =32 kpcr and

min =2 kpcr . Its shape is shown in Figure 4(a). Actually the line can be di-

vided into several fragments and the order can be rearranged, as shown in Figure 4(b).

(a) Monotonically increasing (b) Rearranged

Figure 4. The ideal configuration based on the spiral assumption.

Figure 5. Evolution of the configurations.

Then we select suitable mother ships and fast ships to let the resulting trajectory approach
*()f r  . The evolution of initial layout is shown by red spots in Figure 5.

To design a well-done settle strategy from initial stars which can make J optimal is almost

impossible. Firstly, we only consider a part of the real J, that is *

41 10 ()

rem

rem r

N
J

N E E




 
. The aim

 8

of optimization is to select a subset to make the merit function *J maximum, where
remN is the

count of selected stars. We raised a reverse method to generate the optimal settle trees. Firstly all

the stars that can be rendezvoused with from initial stars are calculated. Then a global optimiza-

tion algorithm is used to select stars which make J optimal. Finally the settle trees are generated

using selected stars as many as possible using the method in Section VI.

As the starting stars are specified, the allowed rest time of each star is also known. Then we

can filter all the stars that can be transferred to during the rest time by using impulses less than

the maximum total Δv. Assume the count of achievable stars is N, then the dimension of encoding

is N. Boolean variables are used to express the select status of each star. 0 indicates that the star is

filtered and 1 indicates that the star is selected. The flow of genetic algorithm is presented in Fig-

ure 6. The comparison between preliminary targets and optimal targets is shown in Figure 7.

Figure 6. The flow of GA.

Figure 7. Stars before and after GA selection. Orange points and yellow points indicate prelimi-

nary targets and selected targets, respectively.

VI. SETTLEMENT TREE CONSTRUCTION
After a clustering of stars that together contribute a uniform spatial distribution have been

selected, the settlement trees should be constructed. The problem of constructing the settlement

trees aims to connect a set of chosen stars to a root star (i.e., the star that is settled by the initial

settlers including both Mother Ships and Fast Ships) through a tree network for each star cluster,

subject to constraints on the propulsive maneuvers and the capacity of Settler Ships.

The minimum spanning tree problem (MST)8 is one of the widely studied combinatorial op-

timization problems. It aims at finding a spanning tree of the given nodes such that the sum of the

weights attached to edges is minimal. When the domain constraints are ignored, the settlement

tree construction problem is closely analogous to the MST. More specifically, the chosen stars

can be viewed as nodes, and the directed edge connecting two stars corresponds to the settlement

trajectory between them which is characterized by both the V budgets consumed and the trans-

fer duration. However, the three main differences between these two problems are as follows: 1)

Unlike nodes in MST, stars are moving and the V costs for settling a star thus depend on the

settlement schedule (i.e., the exact epochs of rendezvous and departure from each star), 2) The

Init Population Calculate Fitness

Achieve Max Generation? Ouput Result

Select

Crossover

Mutation

N

Y

 9

propulsive maneuver limits, as well as the maneuver timing limit, can be converted into the ca-

pacity constraints on edges, and 3) The capacity of Settler Ships adds to the degree constraint on

each node. Although there are serval practically relevant variants of the MST problem, to the best

of our knowledge, our problem does not belong to any existing variant of the MST. Owing to

these specialized constraints, we named this new variant capacitated MST with degree-

constrained problem (CMSTDC). Since the degree-constrained MST9 problem has been shown to

be NP-complete and therefore computationally expensive to solve in exact ways, the CMSTDC

problem is clearly also NP-complete as it can be reduced to a degree-constrained MST when set-

tlers with unlimited fuel budgets are allowed.

Due to the hardness of the CMSTDC problem, it makes heuristic approaches more suitable.

To deal with it, ant colony optimization (ACO) based metaheuristic is proposed to obtain a satis-

factory solution within reasonable time in this paper. ACO is a swarm intelligence optimization

algorithm which has been successfully applied mainly to different routing problems10. Conver-

gence proofs for generalized versions of ACO algorithms can be found in Ref. 11.

A. Formulation of the CMSTDC problem

Assuming that the star node set is partitioned into L disjoint nonempty subsets, each of

which has one and only one root star. The CMSTDC problem seeks to identify the shortest capac-

itated spanning tree with degree-constrained for each subset. For the sake of simplicity, only the

CMSTDC for a single subset is described in this paper. Formally, the CMSTDC can be defined

on a directed graph < , >G V E , where V is a set of nodes comprised of a unique root node 0 and

a subset /{0}V of n star nodes. E is a set of edges connecting each pair of stars in V . If a fuel

transfer between two stars is permissible without violating both maneuver and timing limits, an

edge between the corresponding star nodes exists. Thus, the directed edge (,)i j E corresponds

the orbital maneuver from star i V to j V , associated with which is the required minimum

transfer time * *

max
()

() arg min () , () (0,90)
ij i

ij i ij i ij i
t t

t t v t V t t


      Myr, where
it is the exact epoch of

rendezvous from the star i , and ()ij iv t denotes the velocity change incurred during the transfer

at time
it . Additionally, up to three Settler Ships can depart from each settled star, as long as at

least 2 Myr have been elapsed since the star became settled. Each Settler Ship can rendezvous

with a single star, and each star can only be settled once. The objective is to determine how the

settlement tree is constructed to settle as many stars as possible while minimizing the average

rendezvous epoch of all leaf stars (i.e., the settled star that does not release any Settler Ship).

The decision variable 1ijx  indicates that the edge proceeding from star node i to j is part

of the CMSTDC. Clearly, the set of settled stars is { | 1, }iv

i V

V v x v V
 

    , and the set of leaf

nodes can thus be defined as { | 0, }ui

i V

U u x u V
 

   . For the sake of clarity, the CMSTDC

problem can be formulated by the following integer linear programming model:

  *min 10* / () 10*ij i ij

i V j V

V V t t x U
 

 
    

 
 (10)

subject to

0s.t. 0i

i V

x


 (11)

 1,ij

i V

x j V


   (12)

 10

 3,ji

i V

x j V


   (13)

 0 90,jt i V     (14)

 * () 2 , ,ij i j i ij ijt t t t x x i j V       (15)

 {0,1}, ,ijx i j V   (16)

The objective (10) is to settle as many chosen stars as possible, while minimizing the aver-

age rendezvous epoch of all leaf stars in CMSTDC. According to the timing constraint that all

settlement events must be made up to 90 Myr past Year Zero, the second term in cost function is

less than the penalty of losing one star in the settlement tree, that is the first term in (10). Clearly,

the objective shows the preference on the number of settled stars. Constraints (11) and (12) en-

sure that there is only one root star and each star can be settled once by exactly one Settler Ship.

Constraint (13) means that the out-degree of each star node is less than or equal to 3. Maneuver

timing constraints is given in (14). Constraint (15) guarantees the time gap between two succes-

sive settlements is greater than 2 Myr. Eventually, constraint (16) imposes the restriction on the

decision variables.

B. Ant Colony Optimization

ACO represents an optimization problem by a construction graph and uses K artificial ants to

walk on the graph where K is the size of ant colony. Each ant constructs a solution iteratively and

its behavior is guided by pheromone and heuristic information. The construction graph for our

problem is the settlement mission graph defined above, in which the nodes are chosen stars and

the edges are solution components. The proposed ACO procedure is summarized in Algorithm 3.

The main iterative procedure of ACO consists of three steps. At the first step, each ant builds a

solution according to the transition rule. Subsequently a local search procedure is employed to

improve every constructed solution. At the last step, pheromone is updated. The iterative process

terminates when a stopping criterion is satisfied. In the following, the main components of the

proposed ACO are detailed.

Each ant constructs a CMSTDC in the same manner: starting from the empty partial solution

T  , the settlement tree is extended incrementally layer by layer. By means of selecting the

stars to be settled in the next layer from the available candidates ()Can T V which is defined as

the set of stars can be settled without violating any domain constraints. Consequently, the edge

connecting the chosen star node ()i Can T and its father () Vf i  is thus added to the partial solu-

tion. As in ACO algorithms the main working principle is to utilize the search memory, let us

briefly describe how this memory is implemented. We use a square matrix with 1n  columns and

rows. Each entry stores the pheromone intensity on each edge as an indicator of the usefulness of

connecting these two nodes in previous iterations, based on the evaluation of the solutions found.

In detail, an ant makes its decision on which star node to be settled in the next layer according to

the following biased probabilistic rule:

()

 Myrif the star () and 90 ,

0, otherwise

la b

il ill Can T

a b

ij ij

ij

tl Can T
p  

 



 


 


 



 (17)

 11

The probability is defined by two factors, the pheromone
ij of edge (,)i j , and the corre-

sponding heuristic information
ij that is defined as

 *

1
=ij

ij it t



. In addition, a and b are the

parameters that control their relative importance.

Once all ants have gone through solution construction, the pheromone update procedure is ap-

plied to these pheromone values. The update strategy is a pure elitist strategy, where only for

edges belonging to the best-so-far CMSTDC reinforcement takes place. Moreover, all pheromone

trails are decreased uniformly through pheromone evaporation as to allow ants forgetting bad so-

lutions. The ACO iterative process terminates when a stopping criterion is satisfied.

Algorithm 3 ACO for the CMSTDC problem

1: Set parameters, initialize pheromone trails

2: while The stopping criterion is not met do

3: for all ants k=1,…,K do

4: , () / {0}k kT Can T V  

5: set the layer indicator l=0, the set of nodes in the l-th layer is defined as
l

L ,
0

{0},L 

, 1, ...,10
l

L l  

6: for each layer 1,...,10l  do

7: for each star
l

i L do

8: while ()kCan T   do

9: for 1, 2, 3c  do //the maximum number of Settler Ships can depart from each settled star

10: if rand (0,1) < 0.1 do //decide how many Settler Ships does the settled star i release?

11: continue;

12: else

13: choose a star ()kj Can T with probability
ij

p

14: add the edge (,)i j to the partial solution
kT

15: () () / { }k kCan T Can T j ,
1 1

{ }
l l

L L j
 


16: end if

17: end for

18: end while

19: end for

20: end for

21: end for

22: for all ants k=1,…,K do

23: evaluate the soluton
kT

24: update the best-so-far soluton *
T

25: end for

26: update the pheromone on all edges of the best-so-far CMSTDC solution *
T

27: end while

28: return *
T

C. Settlement Tree Re-Adjustment

Actually, many stars near the settle tree aren’t settled, and they can be used to improve score

by some operations on the settled stars nearby. Therefore, we consider a local forward search

based on the spanning tree obtained by ACO. We tried the algorithms of reconstructing, adding

points, deleting points, and changing points. Each step is aimed at maximizing the real perfor-

mance index. The operations are as follows:

 12

1) Reconstruct nodes: Delete the last 2 nodes and re-settle using the depth-first search algo-

rithm. The transfer time of the first leg takes the minimum transfer time, and the transfer

time of the other leg reaches 90Myr;

2) Add nodes: If there are less than 3 children nodes in the tree or the arrival time is less

than 88Myr, try to immigrate all the stars that can be settled, and choose the star that

makes the increase of J the most;

3) Delete nodes: try to delete the leaf node if the score increases;

4) Replace nodes: Try to replace the selected star by a nearby unsettled star, calculate the

scores of the settle tree after replacement; if the score after replace increased, accept the

replacement. Otherwise, try another unsettled star nearby.

The flow are presented in Algorithms 4~7.

Algorithm 4 Reconstruction nodes

1: while within computational budget do

2: select one node n from
settledS at random

3: if number of child nodes of n > 0 and number of child nodes of each child node of n == 0

4: best ←  settledJ S and addList ← null and deleteList ← null

5: father ← father of n

6: deleteList ← child nodes of n and n

7: delete child nodes of n and n

8: settledS ← ()arrivalCan T of father

9: for each star candic S do

10: candiC ← ()arrivalCan T of c

11: for loop=1:1000 do

12: select trial(3,2,1,or 0 stars) from candiC at random

13: if  settledJ S deleteList trail > best

14: best ←  settledJ S deleteList trail

15: addList ← trial

16: end if

17: end for

18: end for

19: if length of addList > 0

20: settledS ← settled deleteListS addList 

21: end if

22: end if

23: end while

Algorithm 5 Adding nodes

1: while within computational budget do

2: select one node n from settledS at random

3: if number of child nodes of n < 3 and arrival time of n < 88Myr

4: best ←  settledJ S and select ← null

5: for each star ()arrivals Can T do

 13

6: if  settledJ S s > best

7: best ←  settledJ S s

8: select ← s

9: end if

10: end for
11: if select is not null

12:
settledS ←

settledS select

13: end if

14: end if

15: end while

Algorithm 6 Deleting nodes

1: best ←  settledJ S

2: for each star
settledSs do

3: if  settledJ S s > best

4: best ←  settledJ S s

5: settledS ← settledS s

6: end if

7: end for

Algorithm 7 Replacing nodes

1: for each star settledSs do

2: best ←  settledJ S and select ← null

3: candiS ← if transfer time no change and satisfy constraints of velocity increments

4: for each star candic S do

5: if  settledJ S s c  > best

6: best ←  settledJ S s c 

7: select ← c

8: end if

9: end for

10: if select is not null

11: settledS ← settledS s select 

12: end if

13: end for

VII. FINAL OPTIMIZATION
The settlement trees achieved by the above processes are not as perfect as enough because the

departure and arrival times, as well as the velocity increments of each transfer are not optimal.

Further optimization including the overall optimization for determining the best departure and

arrival times and the body-to-body optimization for calculating the optimal velocity increments of

each transfer are required.

 14

Actually, body-to-body optimization should be contained in the overall optimization if we

want to achieve the global optimal total velocity increments. However, it is too time consuming

and computationally difficult to determine the best departure and arrival times while calculating

the optimal velocity increments of each transfer when there are tens or even hundreds of stars in a

tree. In order to decrease the optimization difficulty, body-to-body optimization is implemented

after overall optimization is completed, and the velocity increments of each transfer are estimated

according to the corresponding two-impulse transfer during overall optimization. The overall op-

timization model is presented in the following part. Note that the overall optimization is imple-

mented tree by tree. More than three impulses will be used if the maximum impulse constraint is

violated. First, the improved DE algorithm2 is applied for both the overall and body-to-body op-

timization, the design variables, objective function and constraints are as follows

1) Design variables

Once a settlement tree is given, the arriving time of each star is expressed as
0 podT T and

90 if the current star is an end-node star

2 [90 (2)] otherwise
ij M M

ij ij ij

T
T T


 

    

 (18)

where
podT is the time that the mothership releases the pod;

0T is the arriving time of the root star;

ijT is the arriving time of
ijS (the jth star in the ith level); M

ijT is the arriving time of
ijS ’s mother

star;
ij is the coefficient that determines the transfer time from the mother star to the current star.

 are exactly the design variables, where all of the values are within [0, 1]. There are

1endN N  design variables in overall optimization model, where N is the number of the total

settled stars and
endN is the number of the total end-node stars.

2) Objective function

The objective is to minimize the total velocity increments of the whole tree.

1

1 2

1

min +
N

i i

i

 J




 = V V (19)

3) Constraints

The velocity increments of each transfer must be no larger than the maximal value

 1 2+ 350 km/s 1, 2, ..., 1i i i N    V V (20)

Although DE tends to provide a global optimum, it is found that is generally slow to converge;

because there are too many variables to deal with for DE. So we also improve the solution ob-

tained by DE by re-optimizing of transfer times with SNOPT, and smooth converge can be ob-

tained.

VIII. RESULTS

Figure 8 provides a summary of all the complete missions sets submitted by NUDT&XSCC

during the competition, including the team’s winning final submission of 3101.15. In general,

score increases along with the climbing of the number of settled stars (see Figure 9) and the de-

crease of the error function (see Figure 10), and flattens near about 2 of fuel coefficient (see Fig-

ure 11). It is interesting noting that the score increases obviously faster than the certain decline

due to the fading of the bonus function.

 15

Figure 8. Evolution of score during competition. Figure 9. Evolution of the number of settled stars.

Figure 10. Evolution of the error function. Figure 11. Evolution of the fuel coefficient.

At the early stage of the competition, we increased the fuel coefficient significantly by opti-

mizing the maneuver time. But the rapid decline of time bonus counteract some scores. Then,

with the better understanding of the error function, effective measures were taken to ensure the

continuous reduction of Er and Etheta. At the last days, the number of settled stars are increased

by regenerating the settlement tree (described in Section VI.C). Through the combined use of var-

ious means, our score finally reached J=3101.15 (primary objective), and 3798 different stars

(secondary objective).

The stars arrived by the mother ships in the final solution is shown in Table 1, where only

one/zero Pod is released in order to make the mother ship go further as fast as possible. The set-

tlement trees depth generally grows up to 7, as shown in Figure 12; which also tells the complexi-

ty of this GTOC X problem due to the enormous tree size. In particular, it seems that the search in

breadth is much more complex than the search in depth. A latest research of the authors using

Monte Carlo tree search algorithm was conducted in the context of GTOC X suggesting that its

use may be competitive to the current state of the art technique.

The total ΔV used performed by each ship and pod is 812701km/s (the second secondary ob-

jective). The final distribution of the reached stars is shown in Figure 13a. The error functions Er

and Etheta, which represent how uniform of the spatial distribution in the galaxy, are 2.4 and 1.1

(see Figure 13b, Figure 13c)), respectively.

 16

It is also given an improved solution found by NUDT&XSCC, completed shortly after the

competition ended, scoring 3139. The main focus is to cut down Er in 3101 solution particularly

in the highest region. Figure 14(a) provides the distributions of the solutions. The different color

stars are explored by different Mother Ships and Fast Ships. It’s obvious that the yellow stars are

changed. Figure 14(a) and (b) show the magnitude of Etheta in each angle range. Etheta in 22.5°

range becomes worse, but Er is decreased dramatically, i.e., the maximum Er value is below 0.2.

Thus, the total score is better in the post-competition solution.

Table 1. Settlement stars arrived by three Mother Ships.

Mother Ship Star id
Time

(Myr)

R

(kpc)

θf

(deg)

Flyby velocity

(km/s)

1

2097 21.935 6.036 93.712 269.555

4478 38.223 10.416 156.137 299.159

4855 58.294 16.266 172.100 290.947

36794 68.013 18.636 179.303 276.667

2

10672 4.588 9.177 -148.361 201.937

40977 29.285 16.029 -114.667 298.950

99421 42.234 19.621 -101.625 276.512

13002 58.086 23.994 -80.995 280.229

12384 71.813 27.826 -76.972 273.760

3

23374 41.979 22.983 -57.319 300.000

21650 56.789 26.457 -46.121 239.596

62350 68.670 29.002 -42.711 232.424

Figure 12. The settlement tress for solution 3101. The central point stands for the Sol.

(a) Targets distribution (b) Etheta (c) Er

Figure 13. Spatial distribution for solution 3101.

 17

(d) Targets distribution (e) Etheta (f) Er

Figure 14. Spatial distribution for solution 3139.

VIII. CONCLUSION

The galaxy stars rendezvous problem posed for this edition of the GTOC was a challenging

time-dependent combination problem. Especially, the tree-shape transfer routine was the first

time introduced into space trajectory optimization problem. The expansion of settlement trees

makes the search space become extremely huge. The reduction of solving difficulty was benefited

greatly from the insights into ideal configuration; actually, the winner solution readily yields the

assumed configuration. Also, we constructed the settlement trees after selecting the optimal tar-

gets. Thus the time-dependent combination problem can be solved using the existing state-of-the-

art techniques, i.e., generic algorithm and ant-colony optimization-based approaches. However,

the performance must be discounted by going around the time-dependent problem, so it is confi-

dently expected that there is still considerable improved room for the current best solution.

ACKNOWLEDGMENTS

We thank JPL for posing this fascinating and challenging problem. This research was support-

ed by the National Natural Science Foundation of China (No. 11702330).

REFERENCES

1 Anastassios E. Petropoulos, Eric D. Gustafson, Gregory J. Whiffen, and Brian D. Anderson, "GTOC X: Settlers of the

Galaxy Problem Description and Summary of the Results", Paper AAS 19-891, Astrodynamics Specialist Conference,

Portland, Maine, 11-15 Aug. 2019.

2 Y. Zhu, Y. Luo and J. Zhang. "Packing Programming of Space Station Spacewalk Based on Bin Packing Theory and

Differential Evolution Algorithm," in Proc. IEEE World Congr. Evol. Comput., Vancouver, BC, Canada, Jul. 2016.

3 H.-X. Shen, T.-J. Zhang, A.-Y. Huang, and Z. Li, "GTOC9: Results from the Xi’an Satellite Control Center (team

XSCC)." Acta Futura. Vol. 11, 2018, pp. 49–55.

4 H.-X. Shen, T.-J. Zhang, L. Casalino, et al. "Optimization of active debris removal missions with multiple target,"

Journal of Spacecraft and Rockets, Vol. 55, No. 1, 2017, pp. 181-189.

5 P. E. Gill, W. Murray, and M. A. Saunders. "SNOPT: An SQP algorithm for large-scale constrained optimization,"

SIAM Journal on Optimization, Vol. 12, 2002, pp. 979-1006.

6 L. F. Shampine, M.K. Gordon. Computer solution of ordinary differential equations: the initial value problem. 1975.

7 https://github.com/devernay/cminpack

8 Graham R L, Hell P. "On the history of the minimum spanning tree problem," Annals of the History of Computing,"

Vol. 7, No. 1, 1985, pp. 43-57.

 18

9 Narula S C, Ho C A. "Degree-constrained minimum spanning tree," Computers & Operations Research, Vol. 7, No. 4,

1980, pp. 239-249.

10 Neumann F, Witt C. "Ant colony optimization and the minimum spanning tree problem," Theoretical Computer Sci-

ence, Vol.411, No.25, 2010, pp. 2406-2413.

11 Dorigo M, Stutzle T. "A short convergence proof for a class of ACO algorithms," IEEE Transactions on Evolution-

ary Computation, 2002, 6.

	GTOC X: Results and Methods of National University of Defense Technology and Xi’an Satellite Control Center
	I. Introduction
	II. Approximate and Accurate Solver for The BVP
	III. Flyby Trajectories for the Motherships
	A. Approach to Fly by Multiple Stars
	B. Two-Star Flyby Optimization Model
	C. Three-Star Flyby Optimization Model
	D. Database Generation

	IV. Configuration optimization
	VI. Settlement Tree construction
	A. Formulation of the CMSTDC problem
	B. Ant Colony Optimization
	C. Settlement Tree Re-Adjustment

	VII. Final optimization
	VIII. ReSULTS
	VIII. Conclusion
	Acknowledgments

