

# The fellowship of the Dyson ring: ACT&Friends results and methods

#### ESA Advanced Concepts Team & Friends

Dario Izzo, Marcus Märtens, Anne Mergy, Emmanuel Blazquez, Moritz von Looz, Pablo Gomez, Giacomo Acciarini, Chit Hong Yam, Javier Hernando Ayuso, Yuri Shimane



#### Team Intro



- Current or former members of ESA's Advanced Concepts Team + Associates
- Spread over 3 time-zones: Netherlands, Japan, USA



#### General Problem Introduction

#### Construction of 12 Dyson Ring stations

- 1. Asteroid collection by 10 motherships
- 2. Determination of ring parameters
- Low-thrust continuous optimization of asteroid trajectories
- 4. Asteroid arrival scheduling



## Motherships: Earth-to-Asteroid and Asteroid-to-Asteroid

- Chemical leg modelled as three impulses: departure, DSM, arrival
  - Time of flight per leg between 5 and 380 days
- Asteroid selection criterion: mass left after dt seconds

$$m_{eff} = m_{ast} \cdot (1 - \alpha \cdot \underline{dt})$$

Improving Edelbaum approximation dt is learned by a FFNN using a dataset Of ~5 million solved OCP problems assuming different target SMA (0.9 to 1.3 AU) of Dyson Ring.





## Motherships: Lazy Race Tree Search

Asteroid preselection: 0.9 quantile of effective mass

#### Branching:

- Candidate asteroids determined by orbital phasing indicator
- Dt computed by ML-corrected
  Edelbaum approximator
- DV computed by solving 3-impulse problem using differential evolution

#### • Pruning:

 Per time slice by computing the accumulated J over time



















## Motherships: Results

- 145k Mothership trajectories found by tree search in total
- Building ensembles of 10 mothers by
  - minimizing overlap (removing duplicate asteroids)
  - Greedily adding for high J (assuming fixed SMA and effective mass)
- The set of all asteroids of a complete ensemble is the input of our ring building pipeline

Final submission ensemble: 301 asteroids with a DV-factor of 19.1269

$$J = B \cdot \frac{10^{-10} \cdot M_{\min}}{a_{Dyson}^{2} \sum_{k=1}^{10} (1 + \Delta V_{k}^{Total} / 50)^{2}}$$



## Ring-Building Pipeline





## **Computing Ring Parameters**





## Computing Ring Parameters

- Global optimisation on J
- Sequence of asteroids defined
- Assumptions:
  - Consider only asteroids with non-zero arrival mass
  - Mass equally distributed by scheduler
- ML-corrected Edelbaum used to estimate ToF



## **Optimal Control Module**





## **Optimal Phased Trajectories**

- Computing optimal phased trajectories to all 12 stations for each asteroid ⇒ Phasing Matrix
- Indirect method
  - Pontryagin Maximum Principle
  - Equality constraints in equinoctial frame
  - Initialization via direct method and ML-corrected Edelbaum
  - High-performance numerical integration with **Taylor's method**





## Optimal Phased Trajectories



- Multiple options per asteroid, and some gaps appear!
- Exploiting the synodic periodicity to refine the search and fill in the gaps.



## Scheduler





#### Scheduler



- Preliminary allocation with a **greedy** scheduler.
- Refinement with bi-level scheduler via differential evolution and a modified heuristic hungarian approach to the scheduling problem.























14



#### Bi-level Scheduler

#### Inner Level

- Station windows are assigned
- Heuristic approach based on **Hungarian** algorithm
- Assignment problem with additional balancing (NP-complete)
- Search for augmented paths along edges of a graph (defined by Phasing Matrix)
- Low depth at first, then refined at higher depths

#### Outer Level

- Change window allocation
- Differential evolution
- Log/alpha encoding for equal repartition







### Fixer and Refinement





## Fixing and refining the solutions

#### • Fixing:

- Adjusting the accuracy in pos/vel of each trajectory
- Forward integration RK78 + cubic spline interpolation
- Resetting OCP until desired accuracy is reached

#### Refining:

- **Trimming**: removing unassigned and negative contribution asteroids
- Mother Boosting: refining local optimas for MGA 1-DSMs
- Solution Boosting: local refinement of low-thrust OCPs



### Final solution

- J = 6359.7249
- $M_{min} = 2.0125 \times 10^5$
- 301 Asteroids
- $\Delta V_{\text{mother, max}} = 19.44$ km/s  $\Delta V_{\text{mother, min}} = 15.09$  km/s





## Thank you for your attention!



Any questions? Contact us!

marcus.maertens@esa.int

emmanuel.blazquez@esa.int