A Near Deterministic Method For Constructing the GTOC-11 Dyson Ring

12/18/2021

James Pezent¹, Jared Sikes², Carrie Sandel³, Ari Rubinsztejn,⁴ Rohan Sood⁵

Astrodynamics and Space Research Lab (ASRL)

The University of Alabama

- 1. PhD Student , Team Leader
- 2. PhD Student
- 3. PhD Student
- 4. PhD Candidate
- 5. Assistant Professor, Lab Director

Overall Strategy

- ► Planar Dyson ring
- Construct many independent "Tours" wrt. fixed bins and radius
 - ▶1 Mothership flyby sequence
 - Transfers of all asteroids in sequence to at least one station
 - ➤ Sequential station build order
 - ➤ Equal build time for each station
- Combine 10 Tours in post processing
 - ➤ Bin-pack to increase minimum mass
- Full fidelity almost all the time

Tools

≻Software

- ➤ ASSET: Astrodynamics Software and Science Enabling Toolkit
 - Custom Sparse Non-Linear Optimizer (PSIOPT & Jet)
 - General Purpose Optimal Control
 - Spacecraft Trajectory Design
 - > C++/Python
 - Developed at UA Open source at EOY 2022

≻Hardware

- ➤ Two desktop computers
 - > i9 9900k (8 Core)
 - > i7 10700k (8 Core)


```
Parallel Sparse Interior-point Optimizer

Problem Statistics

Primal Variables : 195

Equality Constraints : 195

Equality Constraints : 195

Equality Constraints : 10

KKT-Matrix BMT (Pic27) : 255

KKT-Matrix BMT/S2 : 1:54852%

Enginning: PSIGNF

Beginning: P
```

```
Remaining Time :
                      7.99 s
Elapsed Time :
                      0.86 s
                      9.72 %
Progress
 Completed
                          292/3004
  Optimal
                          292/3004
   Acceptable
                            0/3004
                            0/3004
   Not Converged :
                            0/3004
   Diverged
```


Development Cycle

- ➤ Overhauled search 4 times
 - ➤ Restart when scores went logistic
 - ➤ Obtain old score as quickly as possible
 - ➤ Methods became simpler over time

- ➤ Focus on final strategy today
 - 1. Pre-Analysis
 - 2. Tour-Sequence Construction
 - 3. Tour-Transfer Construction
 - 4. Final Solution Construction

Pre-Analysis

- > Estimate best radius
- Estimate score for subsets of asteroids
- ➤ Compute mean mass delivered for highest mass asteroids
 - ➤ MEE Low-thrust model
 - ➤ Disregard phasing/rendezvous w/ station
 - ➤ Average over mean anomaly
- ➤ Repeat over range of station radii

Pre-Analysis Results

- ➤ Best target radius depends on asteroid set
 - \triangleright Target top 1000 average mass delivered (\overline{M}_D)
 - Chose 1.09 AU
- ➤ Derive upper bound on tour TOF
 - ➤ 15.5 years
- \triangleright Derive acceptable $\triangle V$ targets to meet a desired score
- Target ΔV /flyby of .75 km/s and 190 230 flybys
 - > Chosen due to time constraints
 - ➤ Should score 5000 or better

➤ For each asteroid in high mass delivered set

- Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
- ➤ Converge full fidelity flyby
- ➤ Two △Vs per leg
- **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - ➤ Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
- ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - > Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - **➤** Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - ➤ Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - > Kepler propagator shooting scheme
 - > Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two Δ*V*s per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - > Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - ightharpoonup Lowest ΔV solution becomes new sequence
 - Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - ➤ Kepler propagator shooting scheme
 - > Upper bound on tour TOF
 - ➤ Lowest **ΔV** solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two *ΔV*s per leg
 - ➤ Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - ightharpoonup Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two ΔVs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - > Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - \triangleright Find lowest $\triangle V$ Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two △Vs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - ➤ Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - > Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

➤ For each asteroid in high mass delivered set

- Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
- ➤ Converge full fidelity flyby
- ➤ Two ΔVs per leg
- **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - > Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
- ➤ Repeat until TOF limit reached

- ➤ For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two Δ*V*s per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - > Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two △Vs per leg
 - > Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached

- For each asteroid in high mass delivered set
 - Find lowest ΔV Lambert solution from Earth
 - ➤ Must depart within first year
 - ➤ Converge full fidelity flyby
 - ➤ Two ΔVs per leg
 - **≻** Loop
 - \triangleright Estimate ΔV to all other asteroids in high mass set
 - Lambert solver
 - \triangleright Select minimum *n* Lambert ΔV asteroids
 - Solve *n* full fidelity OCPs with these asteroids as next target
 - ➤ Two ΔVs per leg
 - Kepler propagator shooting scheme
 - Upper bound on tour TOF
 - \triangleright Lowest ΔV solution becomes new sequence
 - ➤ Repeat until TOF limit reached
- Deterministic wrt: target # flybys, asteroid set, TOF limit, n
 - ➤ Calculate all possible solutions

Sequence Construction Results

- ➤ Computed 1000s of sequences through high-mass sets
 - ➤ Targeted 20 24 flybys per tour
 - \triangleright n=8 breadth at each stage in beam search
 - ➤ 6-10 search instances running on 2 desktops
 - ➤ 16-20 full solutions per minute at peak throughput
 - > Approx. 3000 OCPs per minute (170-180 per full solution)
- \geq 20% met ΔV target of .75 km/s per flyby
 - ➤ Pass on to transfer construction phase

Transfer Construction

- For each asteroid in sequence compute transfers to as many stations as possible
 - > Evenly spaced build times over final 9 years
 - ➤ Maximize bin-packing mobility of asteroids in solution construction phase

Solution Construction

- Combine 10 tours into final solution
 - ➤ Delete least efficient duplicate asteroid (if any)
 - > Select-best station for each asteroid
 - ➤ Bin-pack to increase minimum station mass
- Final solution scored better than estimated
 - ➤ Better than average mass delivered

Final Solution / Conclusion

Video Removed due to size restrictions

- Final score 5525 w/ bonus
 - ≥ 209 asteroids delivered
 - ➤ 1.10e15 kg minimum mass
- ➤ Possible improvements to our solution
 - ➤ Increase the length of lambert sequences in tour search
 - ightharpoonup More asteroids per tour at same ΔV
 - ➤ Add in light asteroids that almost encounter a mothership
- ➤ Really enjoyed the competition, can't wait for GTOC 12

