

11th Global Trajectory Optimization Competition: Results Found At NUAA

ASTL-NUAA

Nanjing University of Aeronautics and Astronautics

CONTENTS

Problem analysis

Methods

- Results
- To be improved

ANALYSIS

Multi-targets flyby impulse sequence optimization

Programming algorithm based on greedy principle

Optimize orbit elements of "Dyson Ring"

Continuous-thrust time-optimal trajectory optimization

Make the total ΔV lower

Initial solution

Improving

ANALYSIS

$$C=rac{1}{2}v^2-rac{\mu}{r}$$

$$J = \frac{M}{a_{Dyson}^2}$$

The semi major axis of station is about 1 to 1.2 AU.

So, we assumed it is 1.1 AU.

ANALYSIS

CONTENTS

Problem analysis

Methods

3 Results

To be improved 4

Dynamic model

The dynamic model considered in the problem is as follow:

$$\begin{cases} \mathbf{k} = \mathbf{v} \\ \mathbf{k} = -\frac{\mu}{r^3} \mathbf{r} \end{cases}$$

The Mother Ship should meet the following conditions, when flying over an asteroid

$$\begin{cases} \| \mathbf{r}^{mother}(t) - \mathbf{r}^{ast}(t) \| \le 1 \text{km} \\ \mathbf{v}^{mother}(t) - \mathbf{v}^{ast}(t) \| \le 2 \text{km/s} \end{cases}$$

In the J2000 heliocentric ecliptic coordinate, the position error can be ignored, so, it can be treated as a two body **Lambert problem** with relative velocity difference.

Strongly nonlinear, NP-hard.

Genetic algorithm based on the greedy principle

Optimization variables:

Asteroid number NWaiting time t_w Transfer time t_f

Parameters:

Iteration number :1500
Binary encoding
Encoding bit length:100
Population number: 100
Community number: 6
Crossover probability: 0.9
Mutation probability: 0.5

Selection operators:

Roulette Tournament Random sampling

Design of Fitness Function

$$fit_{\min} = \omega_1 \left(\frac{50 + dv_i + dv_e}{50 + dV_{\max}} \right)^2 + \omega_2 \frac{t_f + t_w}{T} + \omega_3 \frac{m}{m_{\max}}$$

$$fit_{\min} = \omega_1 \left(1 + \frac{dv_i + dv_e}{50} \right)^2 + \omega_2 \frac{t_f + t_w}{T}$$

$$fit_{\min} = 0.99 \left(\frac{50 + dv_i + dv_e}{50 + dV_{\max}} \right)^2 + 0.01 \frac{t_f + t_w}{T}$$

$$fit_{\min} = \omega_1 \frac{\left(1 + \frac{dv_i + dv_e}{50}\right)^2}{10^{-16} m} + \omega_2 \frac{t_f + t_w}{T}$$

Fitness function is designed into these three types, which may have the independent variables, such as velocity increment, time and asteroid mass. After adjustment and comparison, the fitness is fixed.

Result of the first problem

Mother Ship	Number of Asteroids visited	Impulses Times	Total Impulse(km/s)		
1	20	26	21.244		
2	20	28	20.743		
3	24	29	29.964		
4	24	27	29.325		
5	21	23	26.941		
6	22	29	22.514		
7	20	25	24.634		
8	22	29	23.582		
9	19	22	21.713		
10	21	33	30.234		

Impulse Re-optimization

In the previous results, the relative velocity is fixed to be 2 km/s for reduce the optimization variables. A new series of optimization variables, [d**v**, tw, tf], are adopted for the GA, when the sequence is fixed.

CONTINUOUS-THRUST TIME-OPTIMAL TRAJECTORY OPTIMIZATION

Equinoctial elements

$$p = a(1-e^2)$$
 $h = \tan(i/2)\cos\Omega$

 $f = e\cos(\omega + \Omega)$ $k = \tan(i/2)\sin\Omega$

$$g = e \sin(\omega + \Omega)$$
 $L = \Omega + \omega + v$

Indirect method

Dynamic model

$$x = M\alpha + D$$

Costate equation

$$\mathcal{R} = -\frac{\partial H}{\partial \mathbf{x}} = -\left(\lambda^T \frac{\partial \mathbf{M}}{\partial \mathbf{x}} \mathbf{\alpha} + \lambda^T \frac{\partial \mathbf{D}}{\partial \mathbf{x}}\right)$$

Shooting equation

$$\begin{bmatrix} \boldsymbol{x}(t_f) - \boldsymbol{x}_f \\ \|\boldsymbol{\lambda}(t_0)\| - 1 \\ H(t_f) - \lambda_x(t_f) \boldsymbol{x}_f^{\boldsymbol{x}} \end{bmatrix} = \boldsymbol{0}$$

rendezvous

CONTINUOUS-THRUST TIME-OPTIMAL TRAJECTORY OPTIMIZATION

Equinoctial elements

$$p = a(1-e^2)$$
 $h = \tan(i/2)\cos\Omega$

 $f = e\cos(\omega + \Omega)$ $k = \tan(i/2)\sin\Omega$

$$g = e \sin(\omega + \Omega)$$
 $L = \Omega + \omega + v$

Indirect method

Dynamic model

$$x = M\alpha + D$$

Costate equation

$$\mathcal{R} = -\frac{\partial H}{\partial x} = -\left(\lambda^T \frac{\partial M}{\partial x} \alpha + \lambda^T \frac{\partial D}{\partial x}\right)$$

Shooting equation

$$\begin{bmatrix} \left(\boldsymbol{x} \left(t_f \right) - \boldsymbol{x}_f \right) \circ \boldsymbol{B}_x \\ \lambda \left(t_f \right) \circ \boldsymbol{B}_\lambda \\ H \left(t_f \right) \end{bmatrix} = \boldsymbol{0}$$

Insert orbit

CONTINUOUS-THRUST TIME-OPTIMAL TRAJECTORY OPTIMIZATION

Indirect method

- discretize the asteroid orbits in phase
- the initial database.

Insert orbit

PROGRAMMING ALGORITHM BASED ON GREEDY PRINCIPLE

Determine

- 1. Asteroid is sent to which station
- 2. The start and end time of station

constructions

the time constraint:

$$t_{i-end} + 90 \le t_{i+1-star} \quad (days)$$

Sort the database with arrival time

Maximize the minimum mass of stations:

 $Max (M_{min})$

Make the station mass average

PROGRAMMING ALGORITHM BASED ON GREEDY PRINCIPLE

Algorithm flowchart

CONTENTS

Problem analysis

Methods

Results

To be improved

RESULTS

ASTL-NUAA 7 Nov 07, 2021 Nov 07, 2021 1.03068e+15, 3735.160200 12:08 AM UTC 213

Station	start (JD)	ending (JD)	M (kg)	Building	
1	101321. 02537	101669. 47069	1.0514e+15	9	
2	100712. 15409	101223. 56348	1.0454e+15	8	
3	99893. 87524	100168.61019	1.0384e+15	6	
4	99141. 47788	99438. 90271	1.0501e+15	4	
5	100279. 44797	100605. 42114	1.0510e+15	5	
6	102703. 48538	103013. 11937	1.0381e+15	12	
7	99569. 02925	99790. 23103	1.0590e+15	7	
8	97891. 22694	98482. 11152	1. 0415e+15	2	
9	97695. 61553	97788. 00911	1.0303e+15	1	
10	102179. 20612	102477. 51018	1.0357e+15	11	
11	101797. 09119	102086. 49942	1.0502e+15	10	
12	98734. 20003	98898. 33828	1.0635e+15	3	

CONTENTS

Problem analysis

Methods

3 Results

To be improved

NUAA

TO BE IMPROVED

- Global optimization
- The orbit is fixed with a=1.1 AU, and the inclination is an average value of all the candidate asteroids.
- Phases of stations need optimization.
- A four impulse transfer maybe save the velocity increment.

THANKS