

Methods and Results from the Team BIT&ITNS

Team Members:

Jingrui Zhang, Yao Zhang, **Han Cai**, Rui Qi, Xingang Li, Yu Qi Shaozhao Lu, Qian Xiao, Ao Shen, Tiantian Zhang, Ji Ye, Zechuan Tian

Report Contents

1 Preliminary analysis

2 Design the Dyson Ring elements

3 Design the flyby sequence

4 Design the departure time

5 Conclusions

1 Preliminary analysis

Candidate analysis

- \square The **semi-major** axis is concentrated in the range of 2.2-3.3.
- \square The eccentricity is concentrated in the range of 0-0.3.
- \square The inclination is concentrated in the range of 0-20°.

1 Preliminary analysis

Candidate analysis

- \square The **semi-major** axis is concentrated in the range of 2.2-3.3.
- \square The eccentricity is concentrated in the range of 0-0.3.
- \square The inclination is concentrated in the range of 0-20°.

It is difficult to determine the parameters of Dyson Ring from the distribution of the candidates' orbital elements

1 Preliminary analysis

Performance index analysis

$$J = B \cdot \frac{10^{-10} \cdot M_{\min}}{a_{Dyson}^{2} \sum_{k=1}^{10} (1 + \Delta V_{k}^{Total} / 50)^{2}}$$

☐ Design the Dyson Ring orbit elements.

Semi-major axis? inclination?

 \square Minimize the sum of $\triangle V$.

Mother Ship flyby sequence? Local optimization method?

 \square Maximize M_{\min} , $M_{\min} = \min \{M_j | j = 1, 2, ..., 12\}$.

Asteroid departure epoch? Station building time?

Design the Dyson Ring orbit elements

Design the mothership flyby sequence

Design the asteroid departure epoch

Grid search $a = 1.0 \sim 1.4 \text{AU}, i = 0 \sim 14^{\circ}$

Free phase time-optimal problem for each asteroid

Indirect Trajectory Optimization Using Modified Equinoctial Elements

MEE equation
$$x = M \frac{T}{m} \alpha + D$$

Hamiltonian
$$H = \lambda^T \left(M \frac{T}{m} \alpha + D \right)$$

Costate equation
$$\lambda = -\frac{\partial H}{\partial x} = -\left(\lambda^T \frac{\partial M}{\partial x} \frac{T}{m} \alpha + \lambda^T \frac{\partial D}{\partial x}\right)$$
 Solved by *cminpack* solver

Optimal thrust direction
$$\alpha^* = -\frac{(\lambda^T M)^T}{\|\lambda^T M\|}$$

$$L(t_f)$$
 free

$$\begin{cases} p(t_f) - p_f = 0 \\ f(t_f) - f_f = 0 \\ g(t_f) - g_f = 0 \\ h(t_f) - h_f = 0 \\ k(t_f) - k_f = 0 \\ \lambda_L(t_f) = 0 \\ H(t_f) + 1 = 0 \end{cases}$$

Shooting function

Grid search

$$a = 1.0 \sim 1.4 \text{AU}, i = 0 \sim 14^{\circ}$$

Free phase time-optimal problem for each asteroid

Choose *a*, *i* according to the characteristic mass

$$\bar{M}_f \ge 6000$$

Assumption: At a suitable departure epoch, the transfer time of the asteroid to each station is near the same.

Choose a, i according to the characteristic mass

- ✓ The number of asteroids decreases as the orbital inclination increases.
- ✓ The semi-major axis of 1.1 contains more big quality asteroids.

Assumption: At a suitable departure epoch, the transfer time of the asteroid to each station is near the same.

Choose a, i according to the characteristic mass

Dyson Ring elements: a = 1.1 AU, $i = 0^{\circ}$

Assumption: At a suitable departure epoch, the transfer time of the asteroid to each station is near the same.

Design the flyby sequence

Parallel beem search method

Optimize mothership AV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Design the flyby sequence

Parallel beem search method

Optimize mothership AV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

1685

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Beam width = 50

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

✓ The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Design the flyby sequence

Parallel beem search method

Optimize mothership

AV

 \checkmark The number of $\overline{M}_f \ge 4000$ is: 1685 ($a = 1.1 \text{AU}, i = 0^\circ$)

Design the flyby sequence

Parallel beem search method

Optimize mothership

 ΔV

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

- □ For each step, the amount of lambert problems = $50 \times 600 \times 1685 = 50,550,000$.
- ☐ Using GPU parallel computing technique.
- ☐ For each step, the GPU calculation time is less than 1.6s, while the CPU calculation time would up to 250s.

Design the flyby sequence

 $\begin{array}{c|c} \textbf{Parallel beem search} & \textbf{Optimize mothership} \\ \textbf{method} & \textbf{\Delta V} \end{array}$

 \checkmark Optimize the flyby sequence total ΔV by sequential quadratic programming.

min
$$\sum_{i=1}^{n-1} \left(\left\| V^{i} - V_{-}^{i} \right\| + \left\| V_{+}^{i} - V^{i} \right\| \right) + \left\| V^{n} - V_{-}^{n} \right\| + \left\| V_{+}^{E} - V^{E} \right\|$$

s.t. $\left\| V^{i} - V_{a}^{i} \right\| \le 2$ $i = 1, 2, ..., n$

Asteroids velocity

$$V_{a}^{1} \qquad V_{-}^{2} \qquad V_{-}^{2} \qquad V_{-}^{2} \qquad V_{-}^{n} \qquad V_{$$

Design the flyby sequence

Parallel beem search method

Optimize mothership ΔV

✓ Mothership 1 flyby sequence: 22 Asteroids, $\Delta V = 13.28$ km/s

Attainable station calculation

Coordinate descent method

optimization

- ✓ For each flyby asteroid, generate a database of arrival phases.
- \checkmark Given the building time of station i, determine whether the asteroid can be reached by the intersection point.

Attainable station calculation

Coordinate descent

optimization

- ✓ For each flyby asteroid, generate a database of arrival phases.
- \checkmark Given the building time of station i, determine whether the asteroid can be reached by the intersection point.

Attainable station calculation

Coordinate descent method

Particle swarm optimization

- ✓ For each flyby asteroid, generate a database of arrival phases.
- \checkmark Given the building time of station i, determine whether the asteroid can be reached by the intersection point.

Attainable station calculation

Coordinate descent method

Particle swarr optimization

✓ Given the building time of station 1-12, generate station reachability table.

Flyby Asteroids

✓ Maximize the minimum column.

While
$$\sum M_{\min}^{p} > \sum M_{\min}^{p-1}$$

for $i = 1:n$
for $j = 1:12$
Find $j \times \max$ maximizes table;
end
Assignment[i] = $j \times ;$

Station

	1	2	•••	11	12
1	m_1^1	0		m_1^{11}	0
2	0	m_2^2		0	m_2^{12}
3	0	0		m_3^{11}	m_3^{12}
4	m_4^1	m_4^2		m_4^{11}	0
•••					
•••					
•••					
•••					
n	0	m_n^2		m_n^{11}	0

end

Attainable station calculation

Coordinate descent method

Particle swarm optimization

✓ Given the building time of station 1-12, generate station reachability table.

Flyby Asteroids

- ✓ Maximize the minimum column.
- ✓ Initial phase and building time as optimization variables.

 φ_1 $MJD_1^0, MJD_2^f, ..., MJD_{12}^0, MJD_{12}^f$

Station

	1	2	•••	11	12				
1	m_1^1	0		m_1^{11}	0				
2	0	m_2^2	•••	0	m_2^{12}				
3	0	0		m_3^{11}	m_3^{12}				
4	m_4^1	m_4^2		m_4^{11}	0				
			•••						
•••	•••								
•••									
n	0	m_n^2		m_n^{11}	0				

Shooting function

- ✓ The particle swarm optimization is used to determine the station building time, initial phase, and the departure epoch of each flyby asteroid.
- ✓ Establish the following indirect method to determine the initial costate variables and transfer time for each asteroid.

Indirect Trajectory Optimization Using Modified Equinoctial Elements

MEE equation
$$x = M \frac{T}{m} \alpha + D$$

Hamiltonian $H = \lambda^T \left(M \frac{T}{m} \alpha + D \right)$

Costate equation $\lambda = -\frac{\partial H}{\partial x} = -\left(\lambda^T \frac{\partial M}{\partial x} \frac{T}{m} \alpha + \lambda^T \frac{\partial D}{\partial x} \right)$

Solved by *cminpack* solver

$$L(t_f) = L_D(t_f)$$

$$g(t_f) - p_f = 0$$

$$g(t_f) - g_f = 0$$

$$h(t_f) - h_f = 0$$

$$k(t_f) - h_f = 0$$

$$L(t_f) - L_D(t_f) = 0$$

$$L(t_f) - L_D(t_f) = 0$$

$$L(t_f) - L_D(t_f) = 0$$
Shooting function

- ✓ The particle swarm optimization is used to determine the station building time, initial phase, and the departure epoch of each flyby asteroid.
- ✓ Establish the following indirect method to determine the initial costate variables and transfer time for each asteroid.

Indirect Trajectory Optimization Using Modified Equinoctial Elements

MEE equation
$$x = M \frac{T}{m} \alpha + D$$

Hamiltonian
$$H = \lambda^T \left(M \frac{T}{m} \alpha + D \right)$$

Costate equation
$$\lambda = -\frac{\partial H}{\partial x} = -\left(\lambda^T \frac{\partial M}{\partial x} \frac{T}{m} \alpha + \lambda^T \frac{\partial D}{\partial x}\right)$$

Optimal thrust direction
$$\alpha^* = -\frac{(\lambda^T M)^T}{\|\lambda^T M\|}$$

5 Conclusions

- ✓ Submissions Score: 3532.7 Mmin:8.003e+14 Dyson ring a = 1.0 AU $i = 8^{\circ}$
- ✓ Latest Score: 5063.8 Mmin:1.032e+15 Dyson ring a = 1.1 AU $i = 0^{\circ}$

Design the Dyson Ring orbit elements

Design the mothership flyby sequence

Design the asteroid departure epoch

- The Dyson Ring orbital elements were not optimized in the submitted version due to the large computational load.
- The use of the optimized Dyson Ring orbital elements yields a much smaller ΔV of each mothership, i.e., the average ΔV is around 26km/s in the submitted version, while it can be reduced to 16km/s after applying the optimized orbital elements.

5 Conclusions

Further improvement and optimization:

- The departure epoch of each mothership is the same in current design, and the departure epoch of motherships should be optimized.
- The stations are built from 1 to 12 by increasing the phase angle of 30 degree, the order of station building needs to be optimized.
- The multi-impulse transfers local optimization problem will be solved by deep neural networks estimation in the future study.

Thanks