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The Global Trajectory Optimisation Competition

» Conceived by Dario lzzo of the European Space Agency’s
Advanced Concepts Team, in 2005, as a recurring event

» Vehicle for investigating both innovative mission design
methods and innovative mission designs

Images of winning solutions GTOC 1 through X (credit: winners, organizers, ACT)
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JPL Team Members over the years GTOC1-GTOCX

Anastassios Petropoulos, Theresa Kowalkowski, Daniel Parcher,
Paul Finlayson, Ed Rinderle, Matthew Vavrina, Jon Sims,
Ryan Russell, Try Lam, Powtawche Williams, Gregory Whiffen,
Nathan Strange, Jennie Johannesen, Chen-Wan Yen, Carl Sauer,
Seungwon Lee, Steven Williams, Damon Landau,

Brent Buffington, Eugene Bonfiglio, Daniel Grebow, Jeffrey Parker,
Juan Arrieta, Rodney Anderson, Eric Gustafson, Gregory Lantoine,
Nitin Arora, Drew Jones, Juan Senent, Mark Jesick, Aline Zimmer,
Julie Bellerose, Thomas Pavlak, Mar Vaquero, Jeffrey Stuart,
Austin Nicholas, Javier Roa, Timothy McElrath, Ralph Roncoli,
David Garza, Nicholas Bradley, Zahi Tarzi, Frank Laipert,
Mark Wallace
44 people in all
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The Solution and the Problem
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The Solution and the Problem
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The Oldest Special-Case Solution
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The Oldest Special-Case Solution

a(1— e?)
1+ ecosf

w(tr —to) = F(a, n+nr,c;n)
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Shape-Solutions for Non-Zero, Derived a?

» Cassini Oval
nr = k
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Shape-Solutions for Non-Zero, Derived a?

» Cassini Oval
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» Logarithmic Spiral
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Shape-Solutions for Non-Zero, Derived a?

» Cassini Oval
nrn = k

» Logarithmic Spiral
r = koqu

» Exponential Sinusoid

r= koeq9+k1 sin (k20+¢)
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Shape-Solutions for Non-Zero, Derived a?

» Cassini Oval
nrn = k

» Logarithmic Spiral
r = koeqe

» Exponential Sinusoid

r= koeq9+k1 sin (k20+¢)

» Pinkham's spiral

pse?(1 + ¢?)

Ty ed?(1 + q2)k cos(f — w)
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What about “Cost” Estimates?

» Hohmann Transfer
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What about “Cost” Estimates?

» Hohmann Transfer

» Edelbaum (circle to coplanar circle)

AV =~ Vel — Ve2
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What about “Cost” Estimates?

» Hohmann Transfer

» Edelbaum (circle to coplanar circle)
AV = Vel — Ve2

» Tangential thrust on an ellipse (Petropoulos)
AV expressed in terms of a series in initial and target semimajor
axes and of elliptic integrals of initial eccentricity. Accurate for
large changes in semimajor axis. Correspondingly for eccentric-
Ity.
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axes and of elliptic integrals of initial eccentricity. Accurate for
large changes in semimajor axis. Correspondingly for eccentric-
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» Stark solutions (comprehensive study by Lantoine and Russell)

1/r? gravity plus a constant inertially fixed acceleration yields
an integrable system.
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What about “Cost” Estimates?

» Hohmann Transfer

» Edelbaum (circle to coplanar circle)
AV = Vel — Ve2

» Tangential thrust on an ellipse (Petropoulos)
AV expressed in terms of a series in initial and target semimajor
axes and of elliptic integrals of initial eccentricity. Accurate for
large changes in semimajor axis. Correspondingly for eccentric-

Ity.

» Stark solutions (comprehensive study by Lantoine and Russell)

1/r? gravity plus a constant inertially fixed acceleration yields
an integrable system.

» Targeted Stark solutions (Landau)
Semi-analytically target a final position and velocity using a
thrust arc with one switch in inertial thrust direction; free vari-
ables are the two directions, the acceleration magnitude, and

the switch time.
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What about “Cost” Estimates? (cont'd)

» Edelbaum (small changes in a, €, i, as simplified by Casalino et al.)

AV ~ [ (kaBa)? + (kel A2 + (kA2
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What about “Cost” Estimates? (cont'd)

» Edelbaum (small changes in a, €, i, as simplified by Casalino et al.)

AV ~ [ (kaBa)? + (kel A2 + (kA2

> Ace from Gauss's variational equations
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Another Type of “Cost” Estimate - Lyapunov functions

» Proximity Quotient, Q, for any pair of orbits (Petropoulos)
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Another Type of “Cost” Estimate - Lyapunov functions

» Proximity Quotient, Q, for any pair of orbits (Petropoulos)

2
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dQ 2Q .
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» Other Lyapunov functions

» Scalar-weighted sum of squares of subtractive differences of
classical orbit elements (llgen, Chang et al.)

» Scalar-weighted sum of [squares of] magnitudes of differences
in angular momentum and eccentricity vectors (Chang et al.,
Gustafson et al.)
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Averaging of Natural Dynamics: J, in GTOC9

» Well-known mean drift rates:

: 3 reg \
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» Mean-anomaly rate (Gurfil):
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» Coupling of Gauss's equations with drift rates to estimate
optimal small impulses for changes in orbital elements
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Synthesis

» Judicious use of analytical repertoire greatly focuses the broad
search procedures

» Care needed not to remove too many degrees of freedom just
for analytical convenience

» Use reasonable padding when filtering solutions based on
analytical estimates
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