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Solution Method Outline
• Preliminary Analyses (backup slides)

• Mothership Trajectory Search

• Lookup Tables

• Lambert Calls

• Asteroid-to-Ring Trajectory Solver

• Indirect Optimization

• Build Station Arrival Scheduler

• Genetic Algorithm

Image Credits: https://degenerateconic.com/uploads/fortran-3.png (read this blog by Jacob Williams!), https://portal.tacc.utexas.edu/user-guides/stampede2, https://www.mathworks.com/help/examples/matlab/win64/MatlabLogoExample_08.png

Mothership Trajectory Search: 
Desktop Workstations, Fortran

Asteroid-to-Ring Trajectory Search: 
Stampede2, Fortran / MPI

Build Station Arrival Scheduler: 
Laptop, MATLAB

Mothership 
Trajectory File

Asteroid-to-Ring 
Trajectory File

Solution File

https://degenerateconic.com/uploads/fortran-3.png
https://portal.tacc.utexas.edu/user-guides/stampede2


Mothership Trajectory Search



Mothership Trajectory Search
• Precompute asteroid/Earth position lookup table

● Temporal grid (3 day time steps over 20 years)
● Spatial grid (latitude/longitude/radius)

• Leg 1 (Earth-to-Asteroid)

• Minimum dv solutions to every asteroid

• Legs 2 through M (Asteroid-to-Asteroid)

• Identify asteroids in current/neighboring bins over selected leg TOF
● Compute flyby maneuvers to considered asteroids
● Choose asteroid encounter that gets best ‘extrapolated cost’

• If no asteroids encountered, try again with longer leg TOF 
● Stop after N tries or if 20 year end time is met

Temporal Grid

Spatial grid



• Russell, Ryan P., “Complete Lambert Solver Including Second-Order Sensitivities”, 
Journal of Guidance, Control, and Dynamics, Online Nov. 2021, 
https://doi.org/10.2514/1.G006089. (open access)

• Fortran with MATLAB drivers online: link in paper 
• Coversine formulation 
• Robust/Fast.  Converges in 1-2 iterations. (~0.2 x 10-6 s per call)
• Interpolates whole domain for initial guess.  1 MB coefficient file, works for all N

• GTOC was great testbed for new solver
• trillions of calls! no failures
• mainly used 0-rev case 

New Lambert Solver

https://doi.org/10.2514/1.G006089


Red: Mothership (covered up by green usually) 
Green: Asteroids in mothership bin or neighboring bins
Dark yellow: asteroid that passes {dv,e,h} filter

Identifying Nearby Asteroids Over Leg TOF 



2 km/s

Case 1

α-θ
θ

2 km/s

Case 2

Δv
Δv1

Δv2

2 km/s

Case 3

Δv

Minimize J= Δv1 + Δv2 over θ

Solve with a 1D grid search, multiple solutions

Computing Flyby Maneuver(s)

one simple Δv



• Tens of thousands of available mothership trajectories
• Expensive to compute asteroid-to-ring trajectories
• Quick estimator for delivered mass:

• Trained with thousands of asteroid-to-ring 
solutions

• Linear function of asteroid and ring SMA  
• How to pick?

• Select highest scoring mothership trajectory
• Remove the asteroids encountered by the 

selected trajectory from all remaining trajectories 
and repeat

Efficiency = delivered mass/initial mass

Maximum for the same asteroid over different 
build station time/phase configurations.

Mothership Trajectory Selection

Constant ring SMA



• Method was very effective at quickly finding hundreds of ‘high-performing’ itineraries
• All mothership trajectories found using two multicore desktop servers
• Efficient because

• Lookup bins reduce which asteroids to consider
• Precomputed asteroid locations
• 1D search on TOF with Lambert solver leads to low DV for each asteroid option
• ‘Extrapolated cost’ was a good way to choose ‘best’ next leg of many options

• What we would have done with more competition time….
• Use TACC or supercomputing to perform mothership searches
• Include global optimization schemes for decision making instead of ‘best’ or ‘second-best’ etc. option for 

each next leg choice
• Couple each mothership search directly with the sequence selection of 10 motherships
• Locally optimize each mothership itinerary by adjusting flyby times using an end to end optimizer
• Substitute rather than remove asteroids encountered by multiple selected motherships 

Summary Mothership Comments



1.  Take all asteroid-to-asteroid legs
• Fixed-state to fixed-state with fixed flight time

2.  Convert one leg from 1 to 20 segments
• Two positions and one flight time per seg.

• Many solutions to Lambert’s problem
• Only positions vary
• Enables potentially more DVs and coasts

3.  Final structure
• Each mothership trajectory had 0-3 improved legs
• 14 legs in total were improved

DV-Coast-DV

Discretize

Coast-DV-Coast-DV

DV-Coast-DV-Coast

DV-Coast-DV-Coast-DV

1

2

3

1

2

3

asteroid

DV

Summary of DV Totals
OLD 146.1760 km/s 
NEW 145.9726 km/s 

SAVE 0.20340 km/s (-0.1391%)

Adding DVs between Asteroid Flybys



Asteroid-to-Ring Trajectory Solver



Asteroid-to-Ring Trajectory Solver
Constant Acceleration, Fixed Final Arrival Time
Initial Position/Velocity on Orbit D (Departure)
Final Position/Velocity on Orbit A (Arrival)

Two Point Boundary Value Problem:

Unknowns (7)
λrf (3)
λvf (3)
t0 (1)

Constraints (6)
r0 = rD(t0) (3)
v0 = vD(t0) (3)

Dynamics

Keplerian Departure/Arrival Orbits
rD(t0), vD(t0) rA(tf), vA(tf)

Constant Acceleration Transfer (12 States)
H = λr

Tv - λv
T(µr/||r||3 + ΓATDλv/||λv||)

dr/dt = v
dv/dt = -µr/||r||3 - ΓATDλv/||λv||
dλr/dt = -∂H/∂r
dλv/dt = -∂H/∂v Not strictly minimum time!



Asteroid-to-Ring Trajectory Solver
• Try every Time Slot / Build Station combination

● 144M (~43,000) total trajectories per run
● M is number of asteroids encountered by motherships

• Levenberg-Marquardt trust region solver
• 1st order derivatives – complex step
• 2nd order derivatives – finite difference

• Message Passing Interface (MPI) parallelization
• Fortran implementation on Stampede2
• One MPI task per asteroid / build station combo.
• 3000-4000 tasks, ~50 nodes, ~2 hour runtime

Build Stations

Time Slots



Build Station Arrival Scheduler



Build Station Arrival Scheduler



Best Solution Details

J 5885.469300
Mmin 1.13283e+15 kg

N 235 asteroids
Ring Geometry

Semimajor Axis 1.1 AU
Inclination 0.0 deg

RAAN 0.0 deg
Phase 0.0 deg

Ring SMA grid 
search

Tried matching 
average asteroid 

orbital plane 
geometry, did 
not perform 

better



UT Austin GTOC11 Team
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Image Credit: https://cockrell.utexas.edu/images/campus/ase-building.jpg



Questions?



Backup Slides



Preliminary Analyses
• Sensitivities of the performance index
• Orbital element distributions of the asteroids
• Proxy filters for asteroid to asteroid transfers…

• Not including details but…
• Performed many min dv transfers between asteroid pairs
• Characterized times of flight and bounds for deltavs
• Developed proxy filters using distance between ecc. vector and 

ang. momentum vector as to limit which asteroids are reachable in 
reasonable times/costs



More asteroids or less Δv  ?

Analytical max occurs for fixed Δv/asteroid (call it Δva) occurs 
at n/asteroid (call it Na) of

Na =50/(Δva)

So… if you use 1 km/s per asteroid, you can get up to 50 
before starting to reduce J

if you use 5 km/s per asteroid, you can get up to only 10 
before starting to reduce J

Relationship holds regardless of sma ring (a) or delivered 
mass per asteroid (mPer)

Bottom line: better plan to reduce Δv per asteroid than get 
more of them. (makes sense because squared vs linear)

Possible J (1 AU ring)
Number of Asteroids  vs.  Δv/ast.
  



Possible J (consider different ring SMA)
1 AU 2.5 AU0.65 AU



Max possible J as function of dv/asteroid



Steepest 
descent!

Wound up operating in box where its good to reduce dv/ast and increase #asteroids, 
but more efficient to reduce dv/asteroid than increase #asteroids



Asteroid Distributions



• Time discretization: 

• Increment all 20 years into 3 day steps

• Space discretization: 
• Spherical grid (radius, longitude, latitude)

• 4 AU max radius: ~1 million bins

• Low inclination: avoids issues at poles

• Precompute Asteroid/Earth Position Lookup Table: 
• Assign asteroids/Earth to spherical bins

• Update bin contents for each 3 day step

time

space

Mothership Trajectory Search



• Leg 1 Earth to Asteroids
• From earliest t0 through the first x years (~1-2), for every time step compute minimum Δv solutions to every 

asteroid, filter out for 
• departure vinf too big (e.g. >8km/s, knowing above 6 km/s requires dv)
• Arrival vinf too big (e.g. >4km/s, knowing above 2 km/s requires dv)

• Store all N resulting options for ballistic Earth to Asteriod1, each completely defined

• Asteroids1 to Asteroid M
• After each flyby use full 6 state to propagate 
• At each 3 day step:

• Identify your s/c current bin
• Identify all asteroids in the current bin and 8 neighboring bins

• Find the union of all sets of asteroids encountered until some max leg TOF.
• For each asteroid in the union set

• Filter out based on geometry, simple OE filters
• For remaining ones do a Δv minimization of all TOF up to the max for that leg. Record the ‘best’ {dv,TOF} for each asteroid 

• Choose from option asteroids using an ‘extrapolated cost’ idea.  Assuming all remaining asteroids have same 
{dv,TOF}, compute the final Performance index

• IF no options, THEN repeat prior leg with longer TOF.  IF no options persist for N tries or if 20 year end of time is 
met. THEN terminate mothership.

• Repeat process to find many mothership itineraries.  Pick 10 good ones later.  

Mothership Trajectories



More Example 
Look Ahead 
Options

Red: Mothership (covered up by green usually) 
Green: Asteroids in mothership bin or neighboring bins
Dark yellow: asteroid that passes {dv,e,h} filter



GTOC min time indirect method derivation
Constant thrust acceleration
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Minimize Hamiltonian with respect to controls: 
Use Pontryagin or Weierstrass to 
choose u that globally optimizes 
H
(because control terms appear 
linearly in H) 

Show H is still an integral of 
motion if no t in EOM
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Boundary Conditions
minimize TOF
fixed initial position & velocity to start orbit 
fixed final position & velocity to final orbit
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How to implement with forward single shooting:
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